Polyadic approximations, fibrations and intersection types
Starting from an exact correspondence between linear approximations and non-idempotent intersection types, we develop a general framework for building systems of intersection types characterizing normalization properties. We show how this construction, which uses in a fundamental way Melliès and Zei...
Gespeichert in:
Veröffentlicht in: | Proceedings of ACM on programming languages 2018-01, Vol.2 (POPL), p.1-28 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Starting from an exact correspondence between linear approximations and non-idempotent intersection types, we develop a general framework for building systems of intersection types characterizing normalization properties. We show how this construction, which uses in a fundamental way Melliès and Zeilberger's ``type systems as functors'' viewpoint, allows us to recover equivalent versions of every well known intersection type system (including Coppo and Dezani's original system, as well as its non-idempotent variants independently introduced by Gardner and de Carvalho). We also show how new systems of intersection types may be built almost automatically in this way. |
---|---|
ISSN: | 2475-1421 2475-1421 |
DOI: | 10.1145/3158094 |