On the geometry of a Picard modular group
We study geometric properties of the action on the complex hyperbolic plane H^2_\mathbb{C} of the Picard modular group \Gamma=\mathrm{PU}(2,1,\mathcal{O}_7) , where \mathcal{O}_7 denotes the ring of algebraic integers in \mathbb{Q}(i\sqrt{7}) . We list conjugacy classes of maximal finite subgroups i...
Gespeichert in:
Veröffentlicht in: | Groups, geometry and dynamics geometry and dynamics, 2023-08, Vol.17 (4), p.1393-1416 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study geometric properties of the action on the complex hyperbolic plane H^2_\mathbb{C} of the Picard modular group \Gamma=\mathrm{PU}(2,1,\mathcal{O}_7) , where \mathcal{O}_7 denotes the ring of algebraic integers in \mathbb{Q}(i\sqrt{7}) . We list conjugacy classes of maximal finite subgroups in \Gamma and give an explicit description of the Fuchsian subgroups that occur as stabilizers of mirrors of complex reflections in \Gamma . As an application, we describe an explicit torsion-free subgroup of index 336 in \Gamma . |
---|---|
ISSN: | 1661-7207 1661-7215 |
DOI: | 10.4171/ggd/734 |