On the geometry of a Picard modular group

We study geometric properties of the action on the complex hyperbolic plane H^2_\mathbb{C} of the Picard modular group \Gamma=\mathrm{PU}(2,1,\mathcal{O}_7) , where \mathcal{O}_7 denotes the ring of algebraic integers in \mathbb{Q}(i\sqrt{7}) . We list conjugacy classes of maximal finite subgroups i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Groups, geometry and dynamics geometry and dynamics, 2023-08, Vol.17 (4), p.1393-1416
1. Verfasser: Deraux, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study geometric properties of the action on the complex hyperbolic plane H^2_\mathbb{C} of the Picard modular group \Gamma=\mathrm{PU}(2,1,\mathcal{O}_7) , where \mathcal{O}_7 denotes the ring of algebraic integers in \mathbb{Q}(i\sqrt{7}) . We list conjugacy classes of maximal finite subgroups in \Gamma and give an explicit description of the Fuchsian subgroups that occur as stabilizers of mirrors of complex reflections in \Gamma . As an application, we describe an explicit torsion-free subgroup of index 336 in \Gamma .
ISSN:1661-7207
1661-7215
DOI:10.4171/ggd/734