Investigation of chalcogen bioisosteric replacement in a series of heterocyclic inhibitors of tryptophan 2,3-dioxygenase
Selenium is an underexplored element that can be used for bioisosteric replacement of lower molecular weight chalcogens such as oxygen and sulfur. More studies regarding the impact of selenium substitution in different chemical scaffolds are needed to fully grasp this element's potential. Herei...
Gespeichert in:
Veröffentlicht in: | European journal of medicinal chemistry 2022-01, Vol.227, p.113892-113892, Article 113892 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Selenium is an underexplored element that can be used for bioisosteric replacement of lower molecular weight chalcogens such as oxygen and sulfur. More studies regarding the impact of selenium substitution in different chemical scaffolds are needed to fully grasp this element's potential. Herein, we decided to evaluate the impact of selenium incorporation in a series of tryptophan 2,3-dioxygenase (TDO2) inhibitors, a target of interest in cancer immunotherapy. First, we synthesized the different chalcogen isosteres through Suzuki-Miyaura type coupling. Next, we evaluated the isosteres' affinity and selectivity for TDO2, as well as their lipophilicity, microsomal stability and cellular toxicity on TDO2-expressing cell lines. Overall, chalcogen isosteric replacements did not disturb the on-target activity but allowed for a modulation of the compounds' lipophilicity, toxicity and stability profiles. The present work contributes to our understanding of oxygen/sulfur/selenium isostery towards increasing structural options in medicinal chemistry for the development of novel and distinctive drug candidates.
[Display omitted]
•Synthesis of indole-based benzoxadiazole, benzothiodiazole and benzoselenodiazole•Identification of potent selective TDO2 inhibitors•Selenium substitution leads to more hydrophilic and stable TDO2 inhibitors•O/S/Se substitution revealed to be a valid medicinal chemistry strategy |
---|---|
ISSN: | 0223-5234 1768-3254 |
DOI: | 10.1016/j.ejmech.2021.113892 |