Random walks with stochastic resetting in complex networks: a discrete time approach
We consider a discrete-time Markovian random walk with resets on a connected undirected network. The resets, in which the walker is relocated to randomly chosen nodes, are governed by an independent discrete-time renewal process. Some nodes of the network are target nodes, and we focus on the statis...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2024-09 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a discrete-time Markovian random walk with resets on a connected undirected network. The resets, in which the walker is relocated to randomly chosen nodes, are governed by an independent discrete-time renewal process. Some nodes of the network are target nodes, and we focus on the statistics of first hitting of these nodes. In the non-Markov case of the renewal process, we consider both light-and fat-tailed inter-reset distributions. We derive the propagator matrix in terms of discrete backward recurrence time PDFs and in the light-tailed case we show the existence of a non-equilibrium steady state. In order to tackle the non-Markov scenario, we derive a defective propagator matrix which describes an auxiliary walk characterized by killing the walker as soon as it hits target nodes. This propagator provides the information on the mean first passage statistics to the target nodes. We establish sufficient conditions for ergodicity of the walk under resetting. Furthermore, we discuss a generic resetting mechanism for which the walk is non-ergodic. Finally, we analyze inter-reset time distributions with infinite mean where we focus on the Sibuya case. We apply these results to study the mean first passage times for Markovian and non-Markovian (Sibuya) renewal resetting protocols in realizations of Watts-Strogatz and Barabási-Albert random graphs. We show non trivial behavior of the dependence of the mean first passage time on the proportions of the relocation nodes, target nodes and of the resetting rates. It turns out that, in the large-world case of the Watts-Strogatz graph, the efficiency of a random searcher particularly benefits from the presence of resets. Lead paragraphDynamics with stochastic resetting (SR) occurs whenever the time evolution of a phenomenon is characterized by repeated relocations that happen randomly in time, according to a certain mechanism. SR is ubiquitous in nature and society: in foraging, an animal undertakes repeated excursions from its lair to search for food; in biochemistry, when certain biomolecules such as proteins are searching for binding sites; problem-solving strategies; financial markets recurrently hit by crises. Resets may represent catastrophic events such as earthquakes, volcanic eruptions or wood fires after which flora and fauna restart to develop, or seasonal hurricanes forcing human societies to reconstruct infrastructures. The first three mentioned examples fall into the category of random search |
---|---|
ISSN: | 1054-1500 |