Structural, morphological, and magnetic properties of carbon-modified nanocrystalline Pr5Co19 alloys
Nanocrystalline rare-earth (R) and transition metal (T) alloys are known for their outstanding magnetic properties, which are driven by the combination of (R) and (T) magnetic moments. Adding carbon (C) has been proven to alter these magnetic properties. In the present work, we use X-ray diffraction...
Gespeichert in:
Veröffentlicht in: | Solid state communications 2024-12, Vol.393, p.115668, Article 115668 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nanocrystalline rare-earth (R) and transition metal (T) alloys are known for their outstanding magnetic properties, which are driven by the combination of (R) and (T) magnetic moments. Adding carbon (C) has been proven to alter these magnetic properties. In the present work, we use X-ray diffraction, transmission electron microscopy, and atom probe tomography to investigate and characterize the impact of carbon addition on the crystalline structure, morphology, and chemical distribution of Pr5Co19 and its carbides Pr5Co19Cx. The nanocrystalline Pr5Co19 compound was synthesized by high-energy ball milling and the addition of carbon was performed by a solid-solid reaction between Pr5Co19 and C10H14. TEM study revealed that after carbonation the microstructure is refined, and the mean grain size decreases from 126 nm in Pr5Co19 to 65 nm with a carbon of content 1.5. Three-dimensional APT was performed to characterize the chemical composition of Pr-Co binary systems. The analyzed Pr5Co19C1.5 sample reveals an irregular nano-lamella structure decorated by carbon atoms, the distance between the lamellas varying from 8 to 20 nm. An under-stoichiometry of Co was found in the C-rich lamellas. Fundamental magnetic properties such as saturation magnetization Ms, exchange field Hex and magnetic susceptibility χ of the Pr5Co19 and its carbides were calculated using the random magnetic anisotropy (RMA) method.
•Effect of carbon atom insertion on the crystalline structure and the morphology of the Pr5Co19 nanocrystalline compound.•In-depth analysis using Atom Probe Tomography shows an overview of the chemical distribution before and after carbonation.•Law of Approach to Magnetic Saturation in Nanocrystalline Pr5Co19Cx.•The magnetism was interpreted in the framework of Random Magnetic Anisotropy Model. |
---|---|
ISSN: | 0038-1098 |
DOI: | 10.1016/j.ssc.2024.115668 |