Spall fracture in wrought and additively manufactured Ni-based superalloys subjected to high pressure laser-driven shocks

The impact response of Nickel-based superalloys is still poorly documented with respect to the industrial interest in these materials. Here, laser-driven shocks are used to study and compare the dynamic behavior of Rene 65 superalloy with different microstructures at very high strain rates in the or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2024-09, Vol.911, p.146944, Article 146944
Hauptverfasser: Barraud, Etienne, de Rességuier, Thibaut, Hémery, Samuel, Cormier, Jonathan, Vinci, Tommaso, Benuzzi-Mounaix, Alessandra, Raffray, Yoann, Loison, Didier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The impact response of Nickel-based superalloys is still poorly documented with respect to the industrial interest in these materials. Here, laser-driven shocks are used to study and compare the dynamic behavior of Rene 65 superalloy with different microstructures at very high strain rates in the order of 106 s−1. Rene 65 specimens studied here are either in cast and wrought or additively manufactured (laser powder bed fusion) and subjected to different heat treatment conditions. Time-resolved velocity measurements provide the yield strength (Hugoniot elastic limit) and spall strength (resistance to dynamic tension) of each variant. In addition, post-recovery characterization gives insight into the initiation and propagation of dynamic fracture, which are shown to depend on the different manufacturing routes and thermal histories.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2024.146944