Spall fracture in wrought and additively manufactured Ni-based superalloys subjected to high pressure laser-driven shocks
The impact response of Nickel-based superalloys is still poorly documented with respect to the industrial interest in these materials. Here, laser-driven shocks are used to study and compare the dynamic behavior of Rene 65 superalloy with different microstructures at very high strain rates in the or...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2024-09, Vol.911, p.146944, Article 146944 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The impact response of Nickel-based superalloys is still poorly documented with respect to the industrial interest in these materials. Here, laser-driven shocks are used to study and compare the dynamic behavior of Rene 65 superalloy with different microstructures at very high strain rates in the order of 106 s−1. Rene 65 specimens studied here are either in cast and wrought or additively manufactured (laser powder bed fusion) and subjected to different heat treatment conditions. Time-resolved velocity measurements provide the yield strength (Hugoniot elastic limit) and spall strength (resistance to dynamic tension) of each variant. In addition, post-recovery characterization gives insight into the initiation and propagation of dynamic fracture, which are shown to depend on the different manufacturing routes and thermal histories. |
---|---|
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/j.msea.2024.146944 |