Experimental study of particle impact on cohesive granular packing

We investigate experimentally the impact process of sand particles onto a cohesive granular packing made of similar particles. We use a sand-oil mixture with varying liquid content to tune the cohesive strength of the packing. The outcome of the impact is analyzed in terms of the production of eject...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2024-07, Vol.110 (1-1), p.014901, Article 014901
Hauptverfasser: Selmani, H, Besnard, J B, Ould El Moctar, A, Dupont, P, Valance, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate experimentally the impact process of sand particles onto a cohesive granular packing made of similar particles. We use a sand-oil mixture with varying liquid content to tune the cohesive strength of the packing. The outcome of the impact is analyzed in terms of the production of ejected particles from the packing. We quantify this production as a function of the impact velocity of the particles for increasing cohesion strength. We identified three different regimes depending on the cohesion number Co, defined as the ratio of the interparticle cohesive force to the particle weight. For small cohesion (i.e., Co⪅1), the ejection process is not modified by the cohesion. For intermediate cohesion (i.e., 1⪅Co⪅20), the ejection process becomes less efficient: the number of ejected particles per impact for a given impact velocity is decreased but the critical impact velocity to trigger the ejection process remains unchanged. Finally, for strong cohesion (i.e., Co⪆20), we observed a progressive increase of the critical impact velocity. These experimental results confirm spectacularly the outcomes of recent numerical simulations on the collision process of a particle onto a cohesive packing and open avenues to model the aeolian transport of moist sand.
ISSN:2470-0045
2470-0053
2470-0053
DOI:10.1103/PhysRevE.110.014901