Learning-based prediction of the particles catchment area of deep ocean sediment traps
The ocean biological carbon pump plays a major role in climate and biogeochemical cycles. Photosynthesis at the surface produces particles that are exported to the deep ocean by gravity. Sediment traps, which measure the deep carbon fluxes, help to quantify the carbon stored by this process. However...
Gespeichert in:
Veröffentlicht in: | Ocean science 2024, p.1-22 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ocean biological carbon pump plays a major role in climate and biogeochemical cycles. Photosynthesis at the surface produces particles that are exported to the deep ocean by gravity. Sediment traps, which measure the deep carbon fluxes, help to quantify the carbon stored by this process. However, it is challenging to precisely identify the surface origin of particles trapped thousands of meters deep because of the influence of ocean circulation on the carbon sinking path. In this study, we conducted a series of numerical Lagrangian experiments in the Porcupine Abyssal Plain region of the North Atlantic and developed a machine learning approach to predict the surface origin of particles trapped in a deep sediment trap. Our numerical experiments support its predictive performance, and surface conditions appear to be sufficient to accurately predict the source area, suggesting a potential application with satellite data. We also identify potential factors that affect the prediction efficiency and we show that the best predictions are associated with low kinetic energy and the presence of mesoscale eddies above the trap. This new tool could provide a better link between satellite-derived sea surface observations and deep sediment trap measurements, ultimately improving our understanding of the biological carbon pump mechanism. |
---|---|
ISSN: | 1812-0784 1812-0792 |
DOI: | 10.5194/egusphere-2023-2777 |