Multivariate Multiplicative Functions of Uniform Random Vectors in Large Integer Domains

For a wide class of sequences of integer domains D n ⊂ N d , n ∈ N , we prove distributional limit theorems for F ( X 1 ( n ) , … , X d ( n ) ) , where F is a multivariate multiplicative function and ( X 1 ( n ) , … , X d ( n ) ) is a random vector with uniform distribution on D n . As a corollary,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Resultate der Mathematik 2023-10, Vol.78 (5), Article 201
Hauptverfasser: Kabluchko, Zakhar, Marynych, Alexander, Raschel, Kilian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a wide class of sequences of integer domains D n ⊂ N d , n ∈ N , we prove distributional limit theorems for F ( X 1 ( n ) , … , X d ( n ) ) , where F is a multivariate multiplicative function and ( X 1 ( n ) , … , X d ( n ) ) is a random vector with uniform distribution on D n . As a corollary, we obtain limit theorems for the greatest common divisor and least common multiple of the random set { X 1 ( n ) , … , X d ( n ) } . This generalizes previously known limit results for D n being either a discrete cube or a discrete hyperbolic region.
ISSN:1422-6383
1420-9012
DOI:10.1007/s00025-023-01978-4