Single and bi-compartment poro-elastic model of perfused biological soft tissues: FEniCSx implementation and tutorial

Soft biological tissues demonstrate strong time-dependent and strain-rate mechanical behavior, arising from their intrinsic visco-elasticity and fluid–solid interactions. The time-dependent mechanical properties of soft tissues influence their physiological functions and are related to several patho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanical behavior of biomedical materials 2023-07, Vol.143, p.105902-105902, Article 105902
Hauptverfasser: Lavigne, Thomas, Urcun, Stéphane, Rohan, Pierre-Yves, Sciumè, Giuseppe, Baroli, Davide, Bordas, Stéphane P.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soft biological tissues demonstrate strong time-dependent and strain-rate mechanical behavior, arising from their intrinsic visco-elasticity and fluid–solid interactions. The time-dependent mechanical properties of soft tissues influence their physiological functions and are related to several pathological processes. Poro-elastic modeling represents a promising approach because it allows the integration of multiscale/multiphysics data to probe biologically relevant phenomena at a smaller scale and embeds the relevant mechanisms at the larger scale. The implementation of multiphase flow poro-elastic models however is a complex undertaking, requiring extensive knowledge. The open-source software FEniCSx Project provides a novel tool for the automated solution of partial differential equations by the finite element method. This paper aims to provide the required tools to model the mixed formulation of poro-elasticity, from the theory to the implementation, within FEniCSx. Several benchmark cases are studied. A column under confined compression conditions is compared to the Terzaghi analytical solution, using the L2-norm. An implementation of poro-hyper-elasticity is proposed. A bi-compartment column is compared to previously published results (Cast3m implementation). For all cases, accurate results are obtained in terms of a normalized Root Mean Square Error (RMSE). Furthermore, the FEniCSx computation is found three times faster than the legacy FEniCS one. The benefits of parallel computation are also highlighted. •Implementation of poro-elastic formulations within FEniCSx.•Single and double compartment columns are modeled.•Elastic and hyper-elastic solid scaffolds are computed.•Fast and accurate computation is obtained.
ISSN:1751-6161
1878-0180
DOI:10.1016/j.jmbbm.2023.105902