Machine learning and physics-driven modelling and simulation of multiphase systems

•Design of Experiments for nanoparticle synthesis optimisation.•Multi-domain Encoder-Decoder Latent data Assimilation models for coalescence predictions.•Bayesian regularised artificial neural networks and XGBoost for microdroplet formation prediction in microfluidics.•Long-Short-Term Memory network...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of multiphase flow 2024-09, Vol.179, p.104936, Article 104936
Hauptverfasser: Basha, Nausheen, Arcucci, Rossella, Angeli, Panagiota, Anastasiou, Charitos, Abadie, Thomas, Casas, César Quilodrán, Chen, Jianhua, Cheng, Sibo, Chagot, Loïc, Galvanin, Federico, Heaney, Claire E., Hossein, Fria, Hu, Jinwei, Kovalchuk, Nina, Kalli, Maria, Kahouadji, Lyes, Kerhouant, Morgan, Lavino, Alessio, Liang, Fuyue, Nathanael, Konstantia, Magri, Luca, Lettieri, Paola, Materazzi, Massimiliano, Erigo, Matteo, Pico, Paula, Pain, Christopher C., Shams, Mosayeb, Simmons, Mark, Traverso, Tullio, Valdes, Juan Pablo, Wolffs, Zef, Zhu, Kewei, Zhuang, Yilin, Matar, Omar K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Design of Experiments for nanoparticle synthesis optimisation.•Multi-domain Encoder-Decoder Latent data Assimilation models for coalescence predictions.•Bayesian regularised artificial neural networks and XGBoost for microdroplet formation prediction in microfluidics.•Long-Short-Term Memory networks for predicting mixer performance.•Machine learning and acoustic emission experiments for particle size prediction in fluidised beds.•Gaussian process regression for drop size prediction in sprays. We highlight the work of a multi-university collaborative programme, PREMIERE (PREdictive Modelling with QuantIfication of UncERtainty for MultiphasE Systems), which is at the intersection of multi-physics and machine learning, aiming to enhance predictive capabilities in complex multiphase flow systems across diverse length and time scales. Our contributions encompass a variety of approaches, including the Design of Experiments for nanoparticle synthesis optimisation, Generalised Latent Assimilation models for drop coalescence prediction, Bayesian regularised artificial neural networks, eXtreme Gradient Boosting for microdroplet formation prediction, and a sub-sampling based adversarial neural network for predicting slug flow behaviour in two-phase pipe flows. Additionally, we introduce a generalised latent assimilation technique, Long Short-Term Memory networks for sequence forecasting mixing performance in stirred and static mixers, active learning via Bayesian optimisation to recover coalescence model parameters for high current density electrolysers, Gaussian process regression for drop size distribution predictions for sprays, and acoustic emission signal inversion using gradient boosting machines to characterise particle size distribution in fluidised beds. We also offer perspectives on the development of a shape optimisation framework that leverages the use of a multi-fidelity multiphase emulator. The results presented have applications in chemical synthesis, microfluidics, product manufacturing, and green hydrogen generation. [Display omitted]
ISSN:0301-9322
DOI:10.1016/j.ijmultiphaseflow.2024.104936