The rheological response of magma to nanolitisation

Viscosity exerts a fundamental control on magmatic kinetics and dynamics, controlling magma ascent, eruptive style, and the emplacement of lava. Nanolites – crystals smaller than a micron – are thought to affect magma viscosity, but the underlying mechanisms for this remain unclear. Here, we use a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of volcanology and geothermal research 2024-04, Vol.448 (1), p.108039, Article 108039
Hauptverfasser: Pereira, Luiz, Linard, Yannick, Wadsworth, Fabian B., Vasseur, Jérémie, Hess, Kai-Uwe, Moretti, Roberto, Dingwell, Donald B., Neuville, Daniel R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 108039
container_title Journal of volcanology and geothermal research
container_volume 448
creator Pereira, Luiz
Linard, Yannick
Wadsworth, Fabian B.
Vasseur, Jérémie
Hess, Kai-Uwe
Moretti, Roberto
Dingwell, Donald B.
Neuville, Daniel R.
description Viscosity exerts a fundamental control on magmatic kinetics and dynamics, controlling magma ascent, eruptive style, and the emplacement of lava. Nanolites – crystals smaller than a micron – are thought to affect magma viscosity, but the underlying mechanisms for this remain unclear. Here, we use a cylinder compression creep technique to measure the viscosity of supercooled silicate liquids with different amounts of iron (0–20 wt% FeOtot) as a function of temperature, applied shear stress, and time. Sample viscosity was independent on the applied shear stresses, and as expected, melt viscosity decreases as temperature is increased, but only until a critical temperature where a time-dependent increase in viscosity occurs for samples contaning 6.0 wt% FeOtot or more. The magnitude of this increase is controlled by the melt iron content. At constant temperature, these changes are substantial and can reach up to three orders of magnitude for the sample with the most iron. Using transmission electron microscopy, X-ray diffraction, and viscosity modelling, we conclude that this viscosity increase is caused by the formation of nanolites. By using scaling approaches to test suspension effects with and without crystal aggregation, we conclude that the nanolites have only a minimal direct physical effect on the observed viscosity change. Rather, our models show that it is the chemical shift in the groundmass silicate melt composition associated with non-stoichiometric crystallisation that dominates the observed viscosity increase. These findings suggest that iron-rich silicates may encounter chemical viscosity jumps once certain elements are removed from the melt phase to form nanolites. Our work demonstrates an underlying mechanism for the role played by nanolites in viscosity changes of magmas. •Iron-rich nanolite crystals form in andesites close to the glass transition temperature.•Nanolites increase bulk viscosity because they cause a silica enrichment in residual melt.•Melt composition changes exert a greater influence on rheology than the physical presence of crystals.
doi_str_mv 10.1016/j.jvolgeores.2024.108039
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04665439v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377027324000313</els_id><sourcerecordid>S0377027324000313</sourcerecordid><originalsourceid>FETCH-LOGICAL-a320t-952c84b33b80f562dbaa3d43a867f3f1ffb6bdca47cac14b0b8e013a8a5ad1873</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxYMoWKv_w149bJ187NexFrVCwUs9h0k2abNsNyVZCv73ZlnRo6eBN-89Zn6EZBRWFGj51K26i-8PxgcTVwyYSHINvLkiC1pXLC-hqa7JAnhV5cAqfkvuYuwAYLItCN8fTRaOxvf-4DT2Wao5-yGazNvshIcTZqPPBhx870YXcXR-uCc3FvtoHn7mkny-vuw323z38fa-We9y5AzGvCmYroXiXNVgi5K1CpG3gmNdVpZbaq0qVatRVBo1FQpUbYCmNRbYptv5kjzOvUfs5Tm4E4Yv6dHJ7XonJw1EWRaCNxeavPXs1cHHGIz9DVCQEyjZyT9QcgIlZ1Ap-jxHTfrl4kyQUTszaNO6YPQoW-_-L_kGojl21w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The rheological response of magma to nanolitisation</title><source>Elsevier ScienceDirect Journals</source><creator>Pereira, Luiz ; Linard, Yannick ; Wadsworth, Fabian B. ; Vasseur, Jérémie ; Hess, Kai-Uwe ; Moretti, Roberto ; Dingwell, Donald B. ; Neuville, Daniel R.</creator><creatorcontrib>Pereira, Luiz ; Linard, Yannick ; Wadsworth, Fabian B. ; Vasseur, Jérémie ; Hess, Kai-Uwe ; Moretti, Roberto ; Dingwell, Donald B. ; Neuville, Daniel R.</creatorcontrib><description>Viscosity exerts a fundamental control on magmatic kinetics and dynamics, controlling magma ascent, eruptive style, and the emplacement of lava. Nanolites – crystals smaller than a micron – are thought to affect magma viscosity, but the underlying mechanisms for this remain unclear. Here, we use a cylinder compression creep technique to measure the viscosity of supercooled silicate liquids with different amounts of iron (0–20 wt% FeOtot) as a function of temperature, applied shear stress, and time. Sample viscosity was independent on the applied shear stresses, and as expected, melt viscosity decreases as temperature is increased, but only until a critical temperature where a time-dependent increase in viscosity occurs for samples contaning 6.0 wt% FeOtot or more. The magnitude of this increase is controlled by the melt iron content. At constant temperature, these changes are substantial and can reach up to three orders of magnitude for the sample with the most iron. Using transmission electron microscopy, X-ray diffraction, and viscosity modelling, we conclude that this viscosity increase is caused by the formation of nanolites. By using scaling approaches to test suspension effects with and without crystal aggregation, we conclude that the nanolites have only a minimal direct physical effect on the observed viscosity change. Rather, our models show that it is the chemical shift in the groundmass silicate melt composition associated with non-stoichiometric crystallisation that dominates the observed viscosity increase. These findings suggest that iron-rich silicates may encounter chemical viscosity jumps once certain elements are removed from the melt phase to form nanolites. Our work demonstrates an underlying mechanism for the role played by nanolites in viscosity changes of magmas. •Iron-rich nanolite crystals form in andesites close to the glass transition temperature.•Nanolites increase bulk viscosity because they cause a silica enrichment in residual melt.•Melt composition changes exert a greater influence on rheology than the physical presence of crystals.</description><identifier>ISSN: 0377-0273</identifier><identifier>EISSN: 1872-6097</identifier><identifier>DOI: 10.1016/j.jvolgeores.2024.108039</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Earth Sciences ; Fluid mechanics ; Geophysics ; Magma ; Mechanics ; Nanocrystals ; Nanolites ; Physics ; Rheology ; Sciences of the Universe ; Volcanism ; Volcanology</subject><ispartof>Journal of volcanology and geothermal research, 2024-04, Vol.448 (1), p.108039, Article 108039</ispartof><rights>2024 The Authors</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a320t-952c84b33b80f562dbaa3d43a867f3f1ffb6bdca47cac14b0b8e013a8a5ad1873</cites><orcidid>0000-0002-8487-5001</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0377027324000313$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04665439$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pereira, Luiz</creatorcontrib><creatorcontrib>Linard, Yannick</creatorcontrib><creatorcontrib>Wadsworth, Fabian B.</creatorcontrib><creatorcontrib>Vasseur, Jérémie</creatorcontrib><creatorcontrib>Hess, Kai-Uwe</creatorcontrib><creatorcontrib>Moretti, Roberto</creatorcontrib><creatorcontrib>Dingwell, Donald B.</creatorcontrib><creatorcontrib>Neuville, Daniel R.</creatorcontrib><title>The rheological response of magma to nanolitisation</title><title>Journal of volcanology and geothermal research</title><description>Viscosity exerts a fundamental control on magmatic kinetics and dynamics, controlling magma ascent, eruptive style, and the emplacement of lava. Nanolites – crystals smaller than a micron – are thought to affect magma viscosity, but the underlying mechanisms for this remain unclear. Here, we use a cylinder compression creep technique to measure the viscosity of supercooled silicate liquids with different amounts of iron (0–20 wt% FeOtot) as a function of temperature, applied shear stress, and time. Sample viscosity was independent on the applied shear stresses, and as expected, melt viscosity decreases as temperature is increased, but only until a critical temperature where a time-dependent increase in viscosity occurs for samples contaning 6.0 wt% FeOtot or more. The magnitude of this increase is controlled by the melt iron content. At constant temperature, these changes are substantial and can reach up to three orders of magnitude for the sample with the most iron. Using transmission electron microscopy, X-ray diffraction, and viscosity modelling, we conclude that this viscosity increase is caused by the formation of nanolites. By using scaling approaches to test suspension effects with and without crystal aggregation, we conclude that the nanolites have only a minimal direct physical effect on the observed viscosity change. Rather, our models show that it is the chemical shift in the groundmass silicate melt composition associated with non-stoichiometric crystallisation that dominates the observed viscosity increase. These findings suggest that iron-rich silicates may encounter chemical viscosity jumps once certain elements are removed from the melt phase to form nanolites. Our work demonstrates an underlying mechanism for the role played by nanolites in viscosity changes of magmas. •Iron-rich nanolite crystals form in andesites close to the glass transition temperature.•Nanolites increase bulk viscosity because they cause a silica enrichment in residual melt.•Melt composition changes exert a greater influence on rheology than the physical presence of crystals.</description><subject>Earth Sciences</subject><subject>Fluid mechanics</subject><subject>Geophysics</subject><subject>Magma</subject><subject>Mechanics</subject><subject>Nanocrystals</subject><subject>Nanolites</subject><subject>Physics</subject><subject>Rheology</subject><subject>Sciences of the Universe</subject><subject>Volcanism</subject><subject>Volcanology</subject><issn>0377-0273</issn><issn>1872-6097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LAzEQxYMoWKv_w149bJ187NexFrVCwUs9h0k2abNsNyVZCv73ZlnRo6eBN-89Zn6EZBRWFGj51K26i-8PxgcTVwyYSHINvLkiC1pXLC-hqa7JAnhV5cAqfkvuYuwAYLItCN8fTRaOxvf-4DT2Wao5-yGazNvshIcTZqPPBhx870YXcXR-uCc3FvtoHn7mkny-vuw323z38fa-We9y5AzGvCmYroXiXNVgi5K1CpG3gmNdVpZbaq0qVatRVBo1FQpUbYCmNRbYptv5kjzOvUfs5Tm4E4Yv6dHJ7XonJw1EWRaCNxeavPXs1cHHGIz9DVCQEyjZyT9QcgIlZ1Ap-jxHTfrl4kyQUTszaNO6YPQoW-_-L_kGojl21w</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Pereira, Luiz</creator><creator>Linard, Yannick</creator><creator>Wadsworth, Fabian B.</creator><creator>Vasseur, Jérémie</creator><creator>Hess, Kai-Uwe</creator><creator>Moretti, Roberto</creator><creator>Dingwell, Donald B.</creator><creator>Neuville, Daniel R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8487-5001</orcidid></search><sort><creationdate>20240401</creationdate><title>The rheological response of magma to nanolitisation</title><author>Pereira, Luiz ; Linard, Yannick ; Wadsworth, Fabian B. ; Vasseur, Jérémie ; Hess, Kai-Uwe ; Moretti, Roberto ; Dingwell, Donald B. ; Neuville, Daniel R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a320t-952c84b33b80f562dbaa3d43a867f3f1ffb6bdca47cac14b0b8e013a8a5ad1873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Earth Sciences</topic><topic>Fluid mechanics</topic><topic>Geophysics</topic><topic>Magma</topic><topic>Mechanics</topic><topic>Nanocrystals</topic><topic>Nanolites</topic><topic>Physics</topic><topic>Rheology</topic><topic>Sciences of the Universe</topic><topic>Volcanism</topic><topic>Volcanology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pereira, Luiz</creatorcontrib><creatorcontrib>Linard, Yannick</creatorcontrib><creatorcontrib>Wadsworth, Fabian B.</creatorcontrib><creatorcontrib>Vasseur, Jérémie</creatorcontrib><creatorcontrib>Hess, Kai-Uwe</creatorcontrib><creatorcontrib>Moretti, Roberto</creatorcontrib><creatorcontrib>Dingwell, Donald B.</creatorcontrib><creatorcontrib>Neuville, Daniel R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of volcanology and geothermal research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pereira, Luiz</au><au>Linard, Yannick</au><au>Wadsworth, Fabian B.</au><au>Vasseur, Jérémie</au><au>Hess, Kai-Uwe</au><au>Moretti, Roberto</au><au>Dingwell, Donald B.</au><au>Neuville, Daniel R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The rheological response of magma to nanolitisation</atitle><jtitle>Journal of volcanology and geothermal research</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>448</volume><issue>1</issue><spage>108039</spage><pages>108039-</pages><artnum>108039</artnum><issn>0377-0273</issn><eissn>1872-6097</eissn><abstract>Viscosity exerts a fundamental control on magmatic kinetics and dynamics, controlling magma ascent, eruptive style, and the emplacement of lava. Nanolites – crystals smaller than a micron – are thought to affect magma viscosity, but the underlying mechanisms for this remain unclear. Here, we use a cylinder compression creep technique to measure the viscosity of supercooled silicate liquids with different amounts of iron (0–20 wt% FeOtot) as a function of temperature, applied shear stress, and time. Sample viscosity was independent on the applied shear stresses, and as expected, melt viscosity decreases as temperature is increased, but only until a critical temperature where a time-dependent increase in viscosity occurs for samples contaning 6.0 wt% FeOtot or more. The magnitude of this increase is controlled by the melt iron content. At constant temperature, these changes are substantial and can reach up to three orders of magnitude for the sample with the most iron. Using transmission electron microscopy, X-ray diffraction, and viscosity modelling, we conclude that this viscosity increase is caused by the formation of nanolites. By using scaling approaches to test suspension effects with and without crystal aggregation, we conclude that the nanolites have only a minimal direct physical effect on the observed viscosity change. Rather, our models show that it is the chemical shift in the groundmass silicate melt composition associated with non-stoichiometric crystallisation that dominates the observed viscosity increase. These findings suggest that iron-rich silicates may encounter chemical viscosity jumps once certain elements are removed from the melt phase to form nanolites. Our work demonstrates an underlying mechanism for the role played by nanolites in viscosity changes of magmas. •Iron-rich nanolite crystals form in andesites close to the glass transition temperature.•Nanolites increase bulk viscosity because they cause a silica enrichment in residual melt.•Melt composition changes exert a greater influence on rheology than the physical presence of crystals.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jvolgeores.2024.108039</doi><orcidid>https://orcid.org/0000-0002-8487-5001</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0273
ispartof Journal of volcanology and geothermal research, 2024-04, Vol.448 (1), p.108039, Article 108039
issn 0377-0273
1872-6097
language eng
recordid cdi_hal_primary_oai_HAL_hal_04665439v1
source Elsevier ScienceDirect Journals
subjects Earth Sciences
Fluid mechanics
Geophysics
Magma
Mechanics
Nanocrystals
Nanolites
Physics
Rheology
Sciences of the Universe
Volcanism
Volcanology
title The rheological response of magma to nanolitisation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20rheological%20response%20of%20magma%20to%20nanolitisation&rft.jtitle=Journal%20of%20volcanology%20and%20geothermal%20research&rft.au=Pereira,%20Luiz&rft.date=2024-04-01&rft.volume=448&rft.issue=1&rft.spage=108039&rft.pages=108039-&rft.artnum=108039&rft.issn=0377-0273&rft.eissn=1872-6097&rft_id=info:doi/10.1016/j.jvolgeores.2024.108039&rft_dat=%3Celsevier_hal_p%3ES0377027324000313%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0377027324000313&rfr_iscdi=true