Water-hydroxide trapping in cobalt tungstate for proton exchange membrane water electrolysis

The oxygen evolution reaction is the bottleneck to energy-efficient water-based electrolysis for the production of hydrogen and other solar fuels. In proton exchange membrane water electrolysis (PEMWE), precious metals have generally been necessary for the stable catalysis of this reaction. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2024-06, Vol.384 (6702), p.1373-1380
Hauptverfasser: Ram, Ranit, Xia, Lu, Benzidi, Hind, Guha, Anku, Golovanova, Viktoria, Garzón Manjón, Alba, Llorens Rauret, David, Sanz Berman, Pol, Dimitropoulos, Marinos, Mundet, Bernat, Pastor, Ernest, Celorrio, Veronica, Mesa, Camilo A, Das, Aparna M, Pinilla-Sánchez, Adrián, Giménez, Sixto, Arbiol, Jordi, López, Núria, García de Arquer, F Pelayo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The oxygen evolution reaction is the bottleneck to energy-efficient water-based electrolysis for the production of hydrogen and other solar fuels. In proton exchange membrane water electrolysis (PEMWE), precious metals have generally been necessary for the stable catalysis of this reaction. In this work, we report that delamination of cobalt tungstate enables high activity and durability through the stabilization of oxide and water-hydroxide networks of the lattice defects in acid. The resulting catalysts achieve lower overpotentials, a current density of 1.8 amperes per square centimeter at 2 volts, and stable operation up to 1 ampere per square centimeter in a PEMWE system at industrial conditions (80°C) at 1.77 volts; a threefold improvement in activity; and stable operation at 1 ampere per square centimeter over the course of 600 hours.
ISSN:0036-8075
1095-9203
1095-9203
DOI:10.1126/science.adk9849