Predicting Survival in Patients with Advanced NSCLC Treated with Atezolizumab Using Pre‐ and on‐Treatment Prognostic Biomarkers

Existing survival prediction models rely only on baseline or tumor kinetics data and lack machine learning integration. We introduce a novel kinetics‐machine learning (kML) model that integrates baseline markers, tumor kinetics, and four on‐treatment simple blood markers (albumin, C‐reactive protein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical pharmacology and therapeutics 2024-10, Vol.116 (4), p.1110-1120
Hauptverfasser: Benzekry, Sébastien, Karlsen, Mélanie, Bigarré, Célestin, Kaoutari, Abdessamad El, Gomes, Bruno, Stern, Martin, Neubert, Ales, Bruno, Rene, Mercier, François, Vatakuti, Suresh, Curle, Peter, Jamois, Candice
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Existing survival prediction models rely only on baseline or tumor kinetics data and lack machine learning integration. We introduce a novel kinetics‐machine learning (kML) model that integrates baseline markers, tumor kinetics, and four on‐treatment simple blood markers (albumin, C‐reactive protein, lactate dehydrogenase, and neutrophils). Developed for immune‐checkpoint inhibition (ICI) in non‐small cell lung cancer on three phase II trials (533 patients), kML was validated on the two arms of a phase III trial (ICI and chemotherapy, 377 and 354 patients). It outperformed the current state‐of‐the‐art for individual predictions with a test set C‐index of 0.790, 12‐months survival accuracy of 78.7% and hazard ratio of 25.2 (95% CI: 10.4–61.3, P 
ISSN:0009-9236
1532-6535
1532-6535
DOI:10.1002/cpt.3371