Kempe classes and almost bipartite graphs

Let G be a graph and k be a positive integer, and let Kc(G,k) denote the number of Kempe equivalence classes for the k-colorings of G. In 2006, Mohar noted that Kc(G,k)=1 if G is bipartite. As a generalization, we show that Kc(G,k)=1 if G is formed from a bipartite graph by adding any number of edge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2024-11, Vol.357, p.94-98
Hauptverfasser: Cranston, Daniel W., Feghali, Carl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a graph and k be a positive integer, and let Kc(G,k) denote the number of Kempe equivalence classes for the k-colorings of G. In 2006, Mohar noted that Kc(G,k)=1 if G is bipartite. As a generalization, we show that Kc(G,k)=1 if G is formed from a bipartite graph by adding any number of edges less than ⌈k/2⌉2+⌊k/2⌋2. We show that our result is tight (up to lower order terms) by constructing, for each k≥8, a graph G formed from a bipartite graph by adding (k2+8k−45+1)/4 edges such that Kc(G,k)≥2. This refutes a recent conjecture of Higashitani–Matsumoto.
ISSN:0166-218X
DOI:10.1016/j.dam.2024.05.043