Modular Bacterial Artificial Chromosome Vectors for Transfer of Large Inserts into Mammalian Cells

To facilitate the use of large-insert bacterial clones for functional analysis, we have constructed new bacterial artificial chromosome vectors, pPAC4 and pBACe4. These vectors contain two genetic elements that enable stable maintenance of the clones in mammalian cells: (1) The Epstein–Barr virus re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genomics (San Diego, Calif.) Calif.), 2000-09, Vol.68 (2), p.118-126
Hauptverfasser: Frengen, Eirik, Zhao, Baohui, Howe, Steve, Weichenhan, Dieter, Osoegawa, Kazutoyo, Gjernes, Elisabet, Jessee, Joel, Prydz, Hans, Huxley, Clare, de Jong, Pieter J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To facilitate the use of large-insert bacterial clones for functional analysis, we have constructed new bacterial artificial chromosome vectors, pPAC4 and pBACe4. These vectors contain two genetic elements that enable stable maintenance of the clones in mammalian cells: (1) The Epstein–Barr virus replicon, oriP, is included to ensure stable episomal propagation of the large insert clones upon transfection into mammalian cells. (2) The blasticidin deaminase gene is placed in a eukaryotic expression cassette to enable selection for the desired mammalian clones by using the nucleoside antibiotic blasticidin. Sequences important to select for loxP-specific genome targeting in mammalian chromosomes are also present. In addition, we demonstrate that the attTn7 sequence present on the vectors permits specific addition of selected features to the library clones. Unique sites have also been included in the vector to enable linearization of the large-insert clones, e.g., for optical mapping studies. The pPAC4 vector has been used to generate libraries from the human, mouse, and rat genomes. We believe that clones from these libraries would serve as an important reagent in functional experiments, including the identification or validation of candidate disease genes, by transferring a particular clone containing the relevant wildtype gene into mutant cells or transgenic or knock-out animals.
ISSN:0888-7543
1089-8646
DOI:10.1006/geno.2000.6286