Thermal catalytic etching of diamond by double-metal layers

We introduce a novel technique for thermal catalytic etching of single-crystal diamond under hydrogen atmosphere using a double-metal layer consisting of two different metallic thin films. Surface phenomena, catalytic activity, hydrogen pressure dependence and etch rates in several double-metal laye...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diamond and related materials 2024-05, Vol.145, p.111075, Article 111075
Hauptverfasser: Tran, D.D., Mannequin, C., Bonvalot, M., Traoré, A., Mariette, H., Sasaki, M., Gheeraert, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a novel technique for thermal catalytic etching of single-crystal diamond under hydrogen atmosphere using a double-metal layer consisting of two different metallic thin films. Surface phenomena, catalytic activity, hydrogen pressure dependence and etch rates in several double-metal layer configurations were investigated. We observe that etching with an optimized thickness ratio of Ni/Pd films increases the etch rate by a factor up to 11 compared to etching with a single-metal layer Ni film. The proposed double-metal layer technique enhances hydrogen absorption, which contributes to an increased etch rate of the process, as compared to conventional single-metal layer thermal catalytic etching. Moreover, the etched pattern shows smooth (111) plane sidewalls and flat (100) step-terrace bottom features. [Display omitted] •The Ni/Pd double-metal layer improves the etch rate in thermal catalytic etching of SCD diamond at high temperature and low hydrogen pressure.•Using an optimized Ni/Pd film increases the etch rate by a factor up to 11 compared to etching with a Ni film.•The double-metal layer forms a NiPd solid solution that improves hydrogen absorption to enhance the etch rate.
ISSN:0925-9635
1879-0062
DOI:10.1016/j.diamond.2024.111075