Kilometer-scale autonomous navigation in subarctic forests: challenges and lessons learned
Challenges inherent to autonomous wintertime navigation in forests include lack of a reliable Global Navigation Satellite System (GNSS) signal, low feature contrast, high illumination variations, and changing environment. This type of off-road environment is an extreme case of situations autonomous...
Gespeichert in:
Veröffentlicht in: | Field Robotics 2022-03, Vol.2 (1), p.1628-1660 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Challenges inherent to autonomous wintertime navigation in forests include lack of a reliable Global Navigation Satellite System (GNSS) signal, low feature contrast, high illumination variations, and changing environment. This type of off-road environment is an extreme case of situations autonomous cars could encounter in northern regions. Thus, it is important to understand the impact of this harsh environment on autonomous navigation systems. To this end, we present a field report analyzing teach-and-repeat navigation in a subarctic forest while subject to fluctuating weather, including light and heavy snow, rain, and drizzle. First, we describe the system, which relies on point cloud registration to localize a mobile robot through a boreal forest, while simultaneously building a map. We experimentally evaluate this system in over 18.8km of autonomous navigation in the teach-and-repeat mode. Over 14 repeat runs, only four manual interventions were required, three of which were due to localization failure and another one caused by battery power outage. We show that dense vegetation perturbs the GNSS signal, rendering it unsuitable for navigation in forest trails. Furthermore, we highlight the increased uncertainty related to localizing using point cloud registration in forest trails. We demonstrate that it is not snow precipitation, but snow accumulation, that affects our system’s ability to localize within the environment. Finally, we expose some challenges and lessons learned from our field campaign to support better experimental work in winter conditions. Our dataset is available online. |
---|---|
ISSN: | 2771-3989 1556-4959 2771-3989 1556-4967 |
DOI: | 10.55417/fr.2022050 |