Nuclear relaxation rate enhancement by a 14N quadrupole nucleus in a fluctuating electric-field gradient
We consider the longitudinal quadrupole relaxation rate enhancement (QRE) of a 1H nucleus due to the time fluctuations of the local dipolar magnetic field created by a close quadrupole 14N nucleus, the electric-field gradient (EFG) Hamiltonian of which changes with time because of vibrations/distort...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2021-11, Vol.155 (18), p.184108-184108 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the longitudinal quadrupole relaxation rate enhancement (QRE) of a 1H nucleus due to the time fluctuations of the local dipolar magnetic field created by a close quadrupole 14N nucleus, the electric-field gradient (EFG) Hamiltonian of which changes with time because of vibrations/distortions of its chemical environment. The QRE is analytically expressed as a linear combination of the cosine Fourier transforms of the three quantum time auto-correlation functions GAA(t) of the 14N spin components along the principal axes A = X, Y, and Z of the mean (time-averaged) EFG Hamiltonian. Denoting the three transition frequencies between the energy levels of this mean Hamiltonian by νA, the functions GAA(t) oscillate at frequencies νA + sA/(2π) with mono-exponential decays of relaxation times τA, where the frequency dynamic shifts sA and the relaxation times τA are closed expressions of the magnitude of the fluctuations of the instantaneous EFG Hamiltonian about its mean and of the characteristic fluctuation time. Thus, the theoretical QRE is the sum of three Lorentzian peaks centered at νA + sA/(2π) with full widths at half maxima 1/(πτA). The predicted peak widths are nearly equal. The predicted dynamic shifts of the peaks are much smaller than their widths and amazingly keep proportional to the transition frequencies νA for reasonably fast EFG fluctuations. The theory is further improved by correcting the transition frequencies by the 14N Zeeman effects of second order. It is successfully applied to reinterpret the QRE pattern measured by Broche, Ashcroft, and Lurie [Magn. Reson. Med. 68, 358 (2012)] in normal cartilage. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/5.0069362 |