A tensor bidiagonalization method for higher‐order singular value decomposition with applications

The need to know a few singular triplets associated with the largest singular values of a third‐order tensor arises in data compression and extraction. This paper describes a new method for their computation using the t‐product. Methods for determining a couple of singular triplets associated with t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical linear algebra with applications 2024-03, Vol.31 (2), p.n/a
Hauptverfasser: El Hachimi, A., Jbilou, K., Ratnani, A., Reichel, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Numerical linear algebra with applications
container_volume 31
creator El Hachimi, A.
Jbilou, K.
Ratnani, A.
Reichel, L.
description The need to know a few singular triplets associated with the largest singular values of a third‐order tensor arises in data compression and extraction. This paper describes a new method for their computation using the t‐product. Methods for determining a couple of singular triplets associated with the smallest singular values also are presented. The proposed methods generalize available restarted Lanczos bidiagonalization methods for computing a few of the largest or smallest singular triplets of a matrix. The methods of this paper use Ritz and harmonic Ritz lateral slices to determine accurate approximations of the largest and smallest singular triplets, respectively. Computed examples show applications to data compression and face recognition.
doi_str_mv 10.1002/nla.2530
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04575470v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920745160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3610-14cc3ae78cbb8ba1753e12982d794b27bb5801254f7c3e571319968f4038a1713</originalsourceid><addsrcrecordid>eNp10MFOgzAYB3BiNHFOEx-BxIsemF9bSuFIFnUmRC96bkopowuj2MLMPPkIPqNPIgzjzVOb9vf9k-_veZcIFggA3za1WGBK4MibIUiSAFGIjsc7g4ASTE-9M-c2ABDRhMw8mfqdapyxfq4LLdamEbX-EJ02jb9VXWUKvxw-K72ulP3-_DK2UNZ3uln3tbD-TtS98gslzbY1Th_G3nVX-aJtay0POe7cOylF7dTF7zn3Xu_vXparIHt-eFymWSBJhCBAoZREKBbLPI9zgRglCuEkxgVLwhyzPKcxIEzDkkmiKEMEJUkUlyGQeNCIzL2bKbcSNW-t3gq750ZovkozPr5BSBkNGexGezXZ1pq3XrmOb0xvh-UdxwkGFlIUwaCuJyWtcc6q8i8WAR_r5kPdfKx7oMFE33Wt9v86_pSlB_8DYyCBPQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920745160</pqid></control><display><type>article</type><title>A tensor bidiagonalization method for higher‐order singular value decomposition with applications</title><source>Wiley Online Library Journals</source><creator>El Hachimi, A. ; Jbilou, K. ; Ratnani, A. ; Reichel, L.</creator><creatorcontrib>El Hachimi, A. ; Jbilou, K. ; Ratnani, A. ; Reichel, L.</creatorcontrib><description>The need to know a few singular triplets associated with the largest singular values of a third‐order tensor arises in data compression and extraction. This paper describes a new method for their computation using the t‐product. Methods for determining a couple of singular triplets associated with the smallest singular values also are presented. The proposed methods generalize available restarted Lanczos bidiagonalization methods for computing a few of the largest or smallest singular triplets of a matrix. The methods of this paper use Ritz and harmonic Ritz lateral slices to determine accurate approximations of the largest and smallest singular triplets, respectively. Computed examples show applications to data compression and face recognition.</description><identifier>ISSN: 1070-5325</identifier><identifier>EISSN: 1099-1506</identifier><identifier>DOI: 10.1002/nla.2530</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Data compression ; Face recognition ; Mathematical analysis ; Mathematics ; partial tensor bidiagonalization ; restarted tensor bidiagonalization ; Singular value decomposition ; tensor ; Tensors ; t‐product</subject><ispartof>Numerical linear algebra with applications, 2024-03, Vol.31 (2), p.n/a</ispartof><rights>2023 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3610-14cc3ae78cbb8ba1753e12982d794b27bb5801254f7c3e571319968f4038a1713</citedby><cites>FETCH-LOGICAL-c3610-14cc3ae78cbb8ba1753e12982d794b27bb5801254f7c3e571319968f4038a1713</cites><orcidid>0000-0003-1729-6816 ; 0000-0003-4887-683X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnla.2530$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnla.2530$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04575470$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>El Hachimi, A.</creatorcontrib><creatorcontrib>Jbilou, K.</creatorcontrib><creatorcontrib>Ratnani, A.</creatorcontrib><creatorcontrib>Reichel, L.</creatorcontrib><title>A tensor bidiagonalization method for higher‐order singular value decomposition with applications</title><title>Numerical linear algebra with applications</title><description>The need to know a few singular triplets associated with the largest singular values of a third‐order tensor arises in data compression and extraction. This paper describes a new method for their computation using the t‐product. Methods for determining a couple of singular triplets associated with the smallest singular values also are presented. The proposed methods generalize available restarted Lanczos bidiagonalization methods for computing a few of the largest or smallest singular triplets of a matrix. The methods of this paper use Ritz and harmonic Ritz lateral slices to determine accurate approximations of the largest and smallest singular triplets, respectively. Computed examples show applications to data compression and face recognition.</description><subject>Data compression</subject><subject>Face recognition</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>partial tensor bidiagonalization</subject><subject>restarted tensor bidiagonalization</subject><subject>Singular value decomposition</subject><subject>tensor</subject><subject>Tensors</subject><subject>t‐product</subject><issn>1070-5325</issn><issn>1099-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp10MFOgzAYB3BiNHFOEx-BxIsemF9bSuFIFnUmRC96bkopowuj2MLMPPkIPqNPIgzjzVOb9vf9k-_veZcIFggA3za1WGBK4MibIUiSAFGIjsc7g4ASTE-9M-c2ABDRhMw8mfqdapyxfq4LLdamEbX-EJ02jb9VXWUKvxw-K72ulP3-_DK2UNZ3uln3tbD-TtS98gslzbY1Th_G3nVX-aJtay0POe7cOylF7dTF7zn3Xu_vXparIHt-eFymWSBJhCBAoZREKBbLPI9zgRglCuEkxgVLwhyzPKcxIEzDkkmiKEMEJUkUlyGQeNCIzL2bKbcSNW-t3gq750ZovkozPr5BSBkNGexGezXZ1pq3XrmOb0xvh-UdxwkGFlIUwaCuJyWtcc6q8i8WAR_r5kPdfKx7oMFE33Wt9v86_pSlB_8DYyCBPQ</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>El Hachimi, A.</creator><creator>Jbilou, K.</creator><creator>Ratnani, A.</creator><creator>Reichel, L.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1729-6816</orcidid><orcidid>https://orcid.org/0000-0003-4887-683X</orcidid></search><sort><creationdate>202403</creationdate><title>A tensor bidiagonalization method for higher‐order singular value decomposition with applications</title><author>El Hachimi, A. ; Jbilou, K. ; Ratnani, A. ; Reichel, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3610-14cc3ae78cbb8ba1753e12982d794b27bb5801254f7c3e571319968f4038a1713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data compression</topic><topic>Face recognition</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>partial tensor bidiagonalization</topic><topic>restarted tensor bidiagonalization</topic><topic>Singular value decomposition</topic><topic>tensor</topic><topic>Tensors</topic><topic>t‐product</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Hachimi, A.</creatorcontrib><creatorcontrib>Jbilou, K.</creatorcontrib><creatorcontrib>Ratnani, A.</creatorcontrib><creatorcontrib>Reichel, L.</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Free Archive</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Numerical linear algebra with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Hachimi, A.</au><au>Jbilou, K.</au><au>Ratnani, A.</au><au>Reichel, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A tensor bidiagonalization method for higher‐order singular value decomposition with applications</atitle><jtitle>Numerical linear algebra with applications</jtitle><date>2024-03</date><risdate>2024</risdate><volume>31</volume><issue>2</issue><epage>n/a</epage><issn>1070-5325</issn><eissn>1099-1506</eissn><abstract>The need to know a few singular triplets associated with the largest singular values of a third‐order tensor arises in data compression and extraction. This paper describes a new method for their computation using the t‐product. Methods for determining a couple of singular triplets associated with the smallest singular values also are presented. The proposed methods generalize available restarted Lanczos bidiagonalization methods for computing a few of the largest or smallest singular triplets of a matrix. The methods of this paper use Ritz and harmonic Ritz lateral slices to determine accurate approximations of the largest and smallest singular triplets, respectively. Computed examples show applications to data compression and face recognition.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nla.2530</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0003-1729-6816</orcidid><orcidid>https://orcid.org/0000-0003-4887-683X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-5325
ispartof Numerical linear algebra with applications, 2024-03, Vol.31 (2), p.n/a
issn 1070-5325
1099-1506
language eng
recordid cdi_hal_primary_oai_HAL_hal_04575470v1
source Wiley Online Library Journals
subjects Data compression
Face recognition
Mathematical analysis
Mathematics
partial tensor bidiagonalization
restarted tensor bidiagonalization
Singular value decomposition
tensor
Tensors
t‐product
title A tensor bidiagonalization method for higher‐order singular value decomposition with applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A23%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20tensor%20bidiagonalization%20method%20for%20higher%E2%80%90order%20singular%20value%20decomposition%20with%20applications&rft.jtitle=Numerical%20linear%20algebra%20with%20applications&rft.au=El%20Hachimi,%20A.&rft.date=2024-03&rft.volume=31&rft.issue=2&rft.epage=n/a&rft.issn=1070-5325&rft.eissn=1099-1506&rft_id=info:doi/10.1002/nla.2530&rft_dat=%3Cproquest_hal_p%3E2920745160%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920745160&rft_id=info:pmid/&rfr_iscdi=true