A tensor bidiagonalization method for higher‐order singular value decomposition with applications

The need to know a few singular triplets associated with the largest singular values of a third‐order tensor arises in data compression and extraction. This paper describes a new method for their computation using the t‐product. Methods for determining a couple of singular triplets associated with t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical linear algebra with applications 2024-03, Vol.31 (2), p.n/a
Hauptverfasser: El Hachimi, A., Jbilou, K., Ratnani, A., Reichel, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The need to know a few singular triplets associated with the largest singular values of a third‐order tensor arises in data compression and extraction. This paper describes a new method for their computation using the t‐product. Methods for determining a couple of singular triplets associated with the smallest singular values also are presented. The proposed methods generalize available restarted Lanczos bidiagonalization methods for computing a few of the largest or smallest singular triplets of a matrix. The methods of this paper use Ritz and harmonic Ritz lateral slices to determine accurate approximations of the largest and smallest singular triplets, respectively. Computed examples show applications to data compression and face recognition.
ISSN:1070-5325
1099-1506
DOI:10.1002/nla.2530