Characterization of the Edge States in Colloidal Bi2Se3 Platelets
The remarkable development of colloidal nanocrystals with controlled dimensions and surface chemistry has resulted in vast optoelectronic applications. But can they also form a platform for quantum materials, in which electronic coherence is key? Here, we use colloidal, two-dimensional Bi2Se3 crysta...
Gespeichert in:
Veröffentlicht in: | Nano letters 2024-05, Vol.24 (17), p.5110-5116 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5116 |
---|---|
container_issue | 17 |
container_start_page | 5110 |
container_title | Nano letters |
container_volume | 24 |
creator | Moes, Jesper R. Vliem, Jara F. de Melo, Pedro M. M. C. Wigmans, Thomas C. Botello-Méndez, Andrés R. Mendes, Rafael G. van Brenk, Ella F. Swart, Ingmar Maisel Licerán, Lucas Stoof, Henk T. C. Delerue, Christophe Zanolli, Zeila Vanmaekelbergh, Daniel |
description | The remarkable development of colloidal nanocrystals with controlled dimensions and surface chemistry has resulted in vast optoelectronic applications. But can they also form a platform for quantum materials, in which electronic coherence is key? Here, we use colloidal, two-dimensional Bi2Se3 crystals, with precise and uniform thickness and finite lateral dimensions in the 100 nm range, to study the evolution of a topological insulator from three to two dimensions. For a thickness of 4–6 quintuple layers, scanning tunneling spectroscopy shows an 8 nm wide, nonscattering state encircling the platelet. We discuss the nature of this edge state with a low-energy continuum model and ab initio GW-Tight Binding theory. Our results also provide an indication of the maximum density of such states on a device. |
doi_str_mv | 10.1021/acs.nanolett.3c04460 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04575158v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039805984</sourcerecordid><originalsourceid>FETCH-LOGICAL-a309t-4a02361663c4a359b02c870512f97d829d0226b862176660b161abe9e0d8a5c93</originalsourceid><addsrcrecordid>eNo9kMFOwzAMhiMEEmPwBhxyhEOHkzRpcxwVMKRJIA3OkdtmLFPWjCZDgqen0wYnW78_2fJHyDWDCQPO7rCJkw674G1KE9FAnis4ISMmBWRKa37635f5ObmIcQ0AWkgYkWm1wh6bZHv3g8mFjoYlTStLH9oPSxcJk43UdbQK3gfXoqf3ji-soK9-GA0H4yU5W6KP9upYx-T98eGtmmXzl6fnajrPUIBOWY7AhWJKiSZHIXUNvCkLkIwvddGWXLfAuapLxVmhlIKaKYa11RbaEmWjxZjcHvau0Jtt7zbYf5uAzsymc7PPIJeFZLL8YgN7c2C3ffjc2ZjMxsXGeo-dDbtoBAhdghx0DCgc0EGiWYdd3w1PGAZmb9bswz-z5mhW_AKjAWxL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039805984</pqid></control><display><type>article</type><title>Characterization of the Edge States in Colloidal Bi2Se3 Platelets</title><source>ACS Publications</source><creator>Moes, Jesper R. ; Vliem, Jara F. ; de Melo, Pedro M. M. C. ; Wigmans, Thomas C. ; Botello-Méndez, Andrés R. ; Mendes, Rafael G. ; van Brenk, Ella F. ; Swart, Ingmar ; Maisel Licerán, Lucas ; Stoof, Henk T. C. ; Delerue, Christophe ; Zanolli, Zeila ; Vanmaekelbergh, Daniel</creator><creatorcontrib>Moes, Jesper R. ; Vliem, Jara F. ; de Melo, Pedro M. M. C. ; Wigmans, Thomas C. ; Botello-Méndez, Andrés R. ; Mendes, Rafael G. ; van Brenk, Ella F. ; Swart, Ingmar ; Maisel Licerán, Lucas ; Stoof, Henk T. C. ; Delerue, Christophe ; Zanolli, Zeila ; Vanmaekelbergh, Daniel</creatorcontrib><description>The remarkable development of colloidal nanocrystals with controlled dimensions and surface chemistry has resulted in vast optoelectronic applications. But can they also form a platform for quantum materials, in which electronic coherence is key? Here, we use colloidal, two-dimensional Bi2Se3 crystals, with precise and uniform thickness and finite lateral dimensions in the 100 nm range, to study the evolution of a topological insulator from three to two dimensions. For a thickness of 4–6 quintuple layers, scanning tunneling spectroscopy shows an 8 nm wide, nonscattering state encircling the platelet. We discuss the nature of this edge state with a low-energy continuum model and ab initio GW-Tight Binding theory. Our results also provide an indication of the maximum density of such states on a device.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.3c04460</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Condensed Matter ; Materials Science ; Physics</subject><ispartof>Nano letters, 2024-05, Vol.24 (17), p.5110-5116</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3535-8366 ; 0000-0003-0860-600X ; 0000-0003-1993-2556 ; 0000-0003-3201-7301 ; 0000-0003-4681-1151 ; 0000-0002-0427-3001</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.3c04460$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.3c04460$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04575158$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Moes, Jesper R.</creatorcontrib><creatorcontrib>Vliem, Jara F.</creatorcontrib><creatorcontrib>de Melo, Pedro M. M. C.</creatorcontrib><creatorcontrib>Wigmans, Thomas C.</creatorcontrib><creatorcontrib>Botello-Méndez, Andrés R.</creatorcontrib><creatorcontrib>Mendes, Rafael G.</creatorcontrib><creatorcontrib>van Brenk, Ella F.</creatorcontrib><creatorcontrib>Swart, Ingmar</creatorcontrib><creatorcontrib>Maisel Licerán, Lucas</creatorcontrib><creatorcontrib>Stoof, Henk T. C.</creatorcontrib><creatorcontrib>Delerue, Christophe</creatorcontrib><creatorcontrib>Zanolli, Zeila</creatorcontrib><creatorcontrib>Vanmaekelbergh, Daniel</creatorcontrib><title>Characterization of the Edge States in Colloidal Bi2Se3 Platelets</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>The remarkable development of colloidal nanocrystals with controlled dimensions and surface chemistry has resulted in vast optoelectronic applications. But can they also form a platform for quantum materials, in which electronic coherence is key? Here, we use colloidal, two-dimensional Bi2Se3 crystals, with precise and uniform thickness and finite lateral dimensions in the 100 nm range, to study the evolution of a topological insulator from three to two dimensions. For a thickness of 4–6 quintuple layers, scanning tunneling spectroscopy shows an 8 nm wide, nonscattering state encircling the platelet. We discuss the nature of this edge state with a low-energy continuum model and ab initio GW-Tight Binding theory. Our results also provide an indication of the maximum density of such states on a device.</description><subject>Condensed Matter</subject><subject>Materials Science</subject><subject>Physics</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOwzAMhiMEEmPwBhxyhEOHkzRpcxwVMKRJIA3OkdtmLFPWjCZDgqen0wYnW78_2fJHyDWDCQPO7rCJkw674G1KE9FAnis4ISMmBWRKa37635f5ObmIcQ0AWkgYkWm1wh6bZHv3g8mFjoYlTStLH9oPSxcJk43UdbQK3gfXoqf3ji-soK9-GA0H4yU5W6KP9upYx-T98eGtmmXzl6fnajrPUIBOWY7AhWJKiSZHIXUNvCkLkIwvddGWXLfAuapLxVmhlIKaKYa11RbaEmWjxZjcHvau0Jtt7zbYf5uAzsymc7PPIJeFZLL8YgN7c2C3ffjc2ZjMxsXGeo-dDbtoBAhdghx0DCgc0EGiWYdd3w1PGAZmb9bswz-z5mhW_AKjAWxL</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Moes, Jesper R.</creator><creator>Vliem, Jara F.</creator><creator>de Melo, Pedro M. M. C.</creator><creator>Wigmans, Thomas C.</creator><creator>Botello-Méndez, Andrés R.</creator><creator>Mendes, Rafael G.</creator><creator>van Brenk, Ella F.</creator><creator>Swart, Ingmar</creator><creator>Maisel Licerán, Lucas</creator><creator>Stoof, Henk T. C.</creator><creator>Delerue, Christophe</creator><creator>Zanolli, Zeila</creator><creator>Vanmaekelbergh, Daniel</creator><general>American Chemical Society</general><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3535-8366</orcidid><orcidid>https://orcid.org/0000-0003-0860-600X</orcidid><orcidid>https://orcid.org/0000-0003-1993-2556</orcidid><orcidid>https://orcid.org/0000-0003-3201-7301</orcidid><orcidid>https://orcid.org/0000-0003-4681-1151</orcidid><orcidid>https://orcid.org/0000-0002-0427-3001</orcidid></search><sort><creationdate>20240501</creationdate><title>Characterization of the Edge States in Colloidal Bi2Se3 Platelets</title><author>Moes, Jesper R. ; Vliem, Jara F. ; de Melo, Pedro M. M. C. ; Wigmans, Thomas C. ; Botello-Méndez, Andrés R. ; Mendes, Rafael G. ; van Brenk, Ella F. ; Swart, Ingmar ; Maisel Licerán, Lucas ; Stoof, Henk T. C. ; Delerue, Christophe ; Zanolli, Zeila ; Vanmaekelbergh, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a309t-4a02361663c4a359b02c870512f97d829d0226b862176660b161abe9e0d8a5c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Condensed Matter</topic><topic>Materials Science</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moes, Jesper R.</creatorcontrib><creatorcontrib>Vliem, Jara F.</creatorcontrib><creatorcontrib>de Melo, Pedro M. M. C.</creatorcontrib><creatorcontrib>Wigmans, Thomas C.</creatorcontrib><creatorcontrib>Botello-Méndez, Andrés R.</creatorcontrib><creatorcontrib>Mendes, Rafael G.</creatorcontrib><creatorcontrib>van Brenk, Ella F.</creatorcontrib><creatorcontrib>Swart, Ingmar</creatorcontrib><creatorcontrib>Maisel Licerán, Lucas</creatorcontrib><creatorcontrib>Stoof, Henk T. C.</creatorcontrib><creatorcontrib>Delerue, Christophe</creatorcontrib><creatorcontrib>Zanolli, Zeila</creatorcontrib><creatorcontrib>Vanmaekelbergh, Daniel</creatorcontrib><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moes, Jesper R.</au><au>Vliem, Jara F.</au><au>de Melo, Pedro M. M. C.</au><au>Wigmans, Thomas C.</au><au>Botello-Méndez, Andrés R.</au><au>Mendes, Rafael G.</au><au>van Brenk, Ella F.</au><au>Swart, Ingmar</au><au>Maisel Licerán, Lucas</au><au>Stoof, Henk T. C.</au><au>Delerue, Christophe</au><au>Zanolli, Zeila</au><au>Vanmaekelbergh, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of the Edge States in Colloidal Bi2Se3 Platelets</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>24</volume><issue>17</issue><spage>5110</spage><epage>5116</epage><pages>5110-5116</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>The remarkable development of colloidal nanocrystals with controlled dimensions and surface chemistry has resulted in vast optoelectronic applications. But can they also form a platform for quantum materials, in which electronic coherence is key? Here, we use colloidal, two-dimensional Bi2Se3 crystals, with precise and uniform thickness and finite lateral dimensions in the 100 nm range, to study the evolution of a topological insulator from three to two dimensions. For a thickness of 4–6 quintuple layers, scanning tunneling spectroscopy shows an 8 nm wide, nonscattering state encircling the platelet. We discuss the nature of this edge state with a low-energy continuum model and ab initio GW-Tight Binding theory. Our results also provide an indication of the maximum density of such states on a device.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.nanolett.3c04460</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3535-8366</orcidid><orcidid>https://orcid.org/0000-0003-0860-600X</orcidid><orcidid>https://orcid.org/0000-0003-1993-2556</orcidid><orcidid>https://orcid.org/0000-0003-3201-7301</orcidid><orcidid>https://orcid.org/0000-0003-4681-1151</orcidid><orcidid>https://orcid.org/0000-0002-0427-3001</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2024-05, Vol.24 (17), p.5110-5116 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04575158v1 |
source | ACS Publications |
subjects | Condensed Matter Materials Science Physics |
title | Characterization of the Edge States in Colloidal Bi2Se3 Platelets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A31%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20the%20Edge%20States%20in%20Colloidal%20Bi2Se3%20Platelets&rft.jtitle=Nano%20letters&rft.au=Moes,%20Jesper%20R.&rft.date=2024-05-01&rft.volume=24&rft.issue=17&rft.spage=5110&rft.epage=5116&rft.pages=5110-5116&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.3c04460&rft_dat=%3Cproquest_hal_p%3E3039805984%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039805984&rft_id=info:pmid/&rfr_iscdi=true |