Characterization of the Edge States in Colloidal Bi2Se3 Platelets

The remarkable development of colloidal nanocrystals with controlled dimensions and surface chemistry has resulted in vast optoelectronic applications. But can they also form a platform for quantum materials, in which electronic coherence is key? Here, we use colloidal, two-dimensional Bi2Se3 crysta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2024-05, Vol.24 (17), p.5110-5116
Hauptverfasser: Moes, Jesper R., Vliem, Jara F., de Melo, Pedro M. M. C., Wigmans, Thomas C., Botello-Méndez, Andrés R., Mendes, Rafael G., van Brenk, Ella F., Swart, Ingmar, Maisel Licerán, Lucas, Stoof, Henk T. C., Delerue, Christophe, Zanolli, Zeila, Vanmaekelbergh, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5116
container_issue 17
container_start_page 5110
container_title Nano letters
container_volume 24
creator Moes, Jesper R.
Vliem, Jara F.
de Melo, Pedro M. M. C.
Wigmans, Thomas C.
Botello-Méndez, Andrés R.
Mendes, Rafael G.
van Brenk, Ella F.
Swart, Ingmar
Maisel Licerán, Lucas
Stoof, Henk T. C.
Delerue, Christophe
Zanolli, Zeila
Vanmaekelbergh, Daniel
description The remarkable development of colloidal nanocrystals with controlled dimensions and surface chemistry has resulted in vast optoelectronic applications. But can they also form a platform for quantum materials, in which electronic coherence is key? Here, we use colloidal, two-dimensional Bi2Se3 crystals, with precise and uniform thickness and finite lateral dimensions in the 100 nm range, to study the evolution of a topological insulator from three to two dimensions. For a thickness of 4–6 quintuple layers, scanning tunneling spectroscopy shows an 8 nm wide, nonscattering state encircling the platelet. We discuss the nature of this edge state with a low-energy continuum model and ab initio GW-Tight Binding theory. Our results also provide an indication of the maximum density of such states on a device.
doi_str_mv 10.1021/acs.nanolett.3c04460
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04575158v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039805984</sourcerecordid><originalsourceid>FETCH-LOGICAL-a309t-4a02361663c4a359b02c870512f97d829d0226b862176660b161abe9e0d8a5c93</originalsourceid><addsrcrecordid>eNo9kMFOwzAMhiMEEmPwBhxyhEOHkzRpcxwVMKRJIA3OkdtmLFPWjCZDgqen0wYnW78_2fJHyDWDCQPO7rCJkw674G1KE9FAnis4ISMmBWRKa37635f5ObmIcQ0AWkgYkWm1wh6bZHv3g8mFjoYlTStLH9oPSxcJk43UdbQK3gfXoqf3ji-soK9-GA0H4yU5W6KP9upYx-T98eGtmmXzl6fnajrPUIBOWY7AhWJKiSZHIXUNvCkLkIwvddGWXLfAuapLxVmhlIKaKYa11RbaEmWjxZjcHvau0Jtt7zbYf5uAzsymc7PPIJeFZLL8YgN7c2C3ffjc2ZjMxsXGeo-dDbtoBAhdghx0DCgc0EGiWYdd3w1PGAZmb9bswz-z5mhW_AKjAWxL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039805984</pqid></control><display><type>article</type><title>Characterization of the Edge States in Colloidal Bi2Se3 Platelets</title><source>ACS Publications</source><creator>Moes, Jesper R. ; Vliem, Jara F. ; de Melo, Pedro M. M. C. ; Wigmans, Thomas C. ; Botello-Méndez, Andrés R. ; Mendes, Rafael G. ; van Brenk, Ella F. ; Swart, Ingmar ; Maisel Licerán, Lucas ; Stoof, Henk T. C. ; Delerue, Christophe ; Zanolli, Zeila ; Vanmaekelbergh, Daniel</creator><creatorcontrib>Moes, Jesper R. ; Vliem, Jara F. ; de Melo, Pedro M. M. C. ; Wigmans, Thomas C. ; Botello-Méndez, Andrés R. ; Mendes, Rafael G. ; van Brenk, Ella F. ; Swart, Ingmar ; Maisel Licerán, Lucas ; Stoof, Henk T. C. ; Delerue, Christophe ; Zanolli, Zeila ; Vanmaekelbergh, Daniel</creatorcontrib><description>The remarkable development of colloidal nanocrystals with controlled dimensions and surface chemistry has resulted in vast optoelectronic applications. But can they also form a platform for quantum materials, in which electronic coherence is key? Here, we use colloidal, two-dimensional Bi2Se3 crystals, with precise and uniform thickness and finite lateral dimensions in the 100 nm range, to study the evolution of a topological insulator from three to two dimensions. For a thickness of 4–6 quintuple layers, scanning tunneling spectroscopy shows an 8 nm wide, nonscattering state encircling the platelet. We discuss the nature of this edge state with a low-energy continuum model and ab initio GW-Tight Binding theory. Our results also provide an indication of the maximum density of such states on a device.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.3c04460</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Condensed Matter ; Materials Science ; Physics</subject><ispartof>Nano letters, 2024-05, Vol.24 (17), p.5110-5116</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3535-8366 ; 0000-0003-0860-600X ; 0000-0003-1993-2556 ; 0000-0003-3201-7301 ; 0000-0003-4681-1151 ; 0000-0002-0427-3001</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.3c04460$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.3c04460$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04575158$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Moes, Jesper R.</creatorcontrib><creatorcontrib>Vliem, Jara F.</creatorcontrib><creatorcontrib>de Melo, Pedro M. M. C.</creatorcontrib><creatorcontrib>Wigmans, Thomas C.</creatorcontrib><creatorcontrib>Botello-Méndez, Andrés R.</creatorcontrib><creatorcontrib>Mendes, Rafael G.</creatorcontrib><creatorcontrib>van Brenk, Ella F.</creatorcontrib><creatorcontrib>Swart, Ingmar</creatorcontrib><creatorcontrib>Maisel Licerán, Lucas</creatorcontrib><creatorcontrib>Stoof, Henk T. C.</creatorcontrib><creatorcontrib>Delerue, Christophe</creatorcontrib><creatorcontrib>Zanolli, Zeila</creatorcontrib><creatorcontrib>Vanmaekelbergh, Daniel</creatorcontrib><title>Characterization of the Edge States in Colloidal Bi2Se3 Platelets</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>The remarkable development of colloidal nanocrystals with controlled dimensions and surface chemistry has resulted in vast optoelectronic applications. But can they also form a platform for quantum materials, in which electronic coherence is key? Here, we use colloidal, two-dimensional Bi2Se3 crystals, with precise and uniform thickness and finite lateral dimensions in the 100 nm range, to study the evolution of a topological insulator from three to two dimensions. For a thickness of 4–6 quintuple layers, scanning tunneling spectroscopy shows an 8 nm wide, nonscattering state encircling the platelet. We discuss the nature of this edge state with a low-energy continuum model and ab initio GW-Tight Binding theory. Our results also provide an indication of the maximum density of such states on a device.</description><subject>Condensed Matter</subject><subject>Materials Science</subject><subject>Physics</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOwzAMhiMEEmPwBhxyhEOHkzRpcxwVMKRJIA3OkdtmLFPWjCZDgqen0wYnW78_2fJHyDWDCQPO7rCJkw674G1KE9FAnis4ISMmBWRKa37635f5ObmIcQ0AWkgYkWm1wh6bZHv3g8mFjoYlTStLH9oPSxcJk43UdbQK3gfXoqf3ji-soK9-GA0H4yU5W6KP9upYx-T98eGtmmXzl6fnajrPUIBOWY7AhWJKiSZHIXUNvCkLkIwvddGWXLfAuapLxVmhlIKaKYa11RbaEmWjxZjcHvau0Jtt7zbYf5uAzsymc7PPIJeFZLL8YgN7c2C3ffjc2ZjMxsXGeo-dDbtoBAhdghx0DCgc0EGiWYdd3w1PGAZmb9bswz-z5mhW_AKjAWxL</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Moes, Jesper R.</creator><creator>Vliem, Jara F.</creator><creator>de Melo, Pedro M. M. C.</creator><creator>Wigmans, Thomas C.</creator><creator>Botello-Méndez, Andrés R.</creator><creator>Mendes, Rafael G.</creator><creator>van Brenk, Ella F.</creator><creator>Swart, Ingmar</creator><creator>Maisel Licerán, Lucas</creator><creator>Stoof, Henk T. C.</creator><creator>Delerue, Christophe</creator><creator>Zanolli, Zeila</creator><creator>Vanmaekelbergh, Daniel</creator><general>American Chemical Society</general><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3535-8366</orcidid><orcidid>https://orcid.org/0000-0003-0860-600X</orcidid><orcidid>https://orcid.org/0000-0003-1993-2556</orcidid><orcidid>https://orcid.org/0000-0003-3201-7301</orcidid><orcidid>https://orcid.org/0000-0003-4681-1151</orcidid><orcidid>https://orcid.org/0000-0002-0427-3001</orcidid></search><sort><creationdate>20240501</creationdate><title>Characterization of the Edge States in Colloidal Bi2Se3 Platelets</title><author>Moes, Jesper R. ; Vliem, Jara F. ; de Melo, Pedro M. M. C. ; Wigmans, Thomas C. ; Botello-Méndez, Andrés R. ; Mendes, Rafael G. ; van Brenk, Ella F. ; Swart, Ingmar ; Maisel Licerán, Lucas ; Stoof, Henk T. C. ; Delerue, Christophe ; Zanolli, Zeila ; Vanmaekelbergh, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a309t-4a02361663c4a359b02c870512f97d829d0226b862176660b161abe9e0d8a5c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Condensed Matter</topic><topic>Materials Science</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moes, Jesper R.</creatorcontrib><creatorcontrib>Vliem, Jara F.</creatorcontrib><creatorcontrib>de Melo, Pedro M. M. C.</creatorcontrib><creatorcontrib>Wigmans, Thomas C.</creatorcontrib><creatorcontrib>Botello-Méndez, Andrés R.</creatorcontrib><creatorcontrib>Mendes, Rafael G.</creatorcontrib><creatorcontrib>van Brenk, Ella F.</creatorcontrib><creatorcontrib>Swart, Ingmar</creatorcontrib><creatorcontrib>Maisel Licerán, Lucas</creatorcontrib><creatorcontrib>Stoof, Henk T. C.</creatorcontrib><creatorcontrib>Delerue, Christophe</creatorcontrib><creatorcontrib>Zanolli, Zeila</creatorcontrib><creatorcontrib>Vanmaekelbergh, Daniel</creatorcontrib><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moes, Jesper R.</au><au>Vliem, Jara F.</au><au>de Melo, Pedro M. M. C.</au><au>Wigmans, Thomas C.</au><au>Botello-Méndez, Andrés R.</au><au>Mendes, Rafael G.</au><au>van Brenk, Ella F.</au><au>Swart, Ingmar</au><au>Maisel Licerán, Lucas</au><au>Stoof, Henk T. C.</au><au>Delerue, Christophe</au><au>Zanolli, Zeila</au><au>Vanmaekelbergh, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of the Edge States in Colloidal Bi2Se3 Platelets</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>24</volume><issue>17</issue><spage>5110</spage><epage>5116</epage><pages>5110-5116</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>The remarkable development of colloidal nanocrystals with controlled dimensions and surface chemistry has resulted in vast optoelectronic applications. But can they also form a platform for quantum materials, in which electronic coherence is key? Here, we use colloidal, two-dimensional Bi2Se3 crystals, with precise and uniform thickness and finite lateral dimensions in the 100 nm range, to study the evolution of a topological insulator from three to two dimensions. For a thickness of 4–6 quintuple layers, scanning tunneling spectroscopy shows an 8 nm wide, nonscattering state encircling the platelet. We discuss the nature of this edge state with a low-energy continuum model and ab initio GW-Tight Binding theory. Our results also provide an indication of the maximum density of such states on a device.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.nanolett.3c04460</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3535-8366</orcidid><orcidid>https://orcid.org/0000-0003-0860-600X</orcidid><orcidid>https://orcid.org/0000-0003-1993-2556</orcidid><orcidid>https://orcid.org/0000-0003-3201-7301</orcidid><orcidid>https://orcid.org/0000-0003-4681-1151</orcidid><orcidid>https://orcid.org/0000-0002-0427-3001</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2024-05, Vol.24 (17), p.5110-5116
issn 1530-6984
1530-6992
language eng
recordid cdi_hal_primary_oai_HAL_hal_04575158v1
source ACS Publications
subjects Condensed Matter
Materials Science
Physics
title Characterization of the Edge States in Colloidal Bi2Se3 Platelets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A31%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20the%20Edge%20States%20in%20Colloidal%20Bi2Se3%20Platelets&rft.jtitle=Nano%20letters&rft.au=Moes,%20Jesper%20R.&rft.date=2024-05-01&rft.volume=24&rft.issue=17&rft.spage=5110&rft.epage=5116&rft.pages=5110-5116&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.3c04460&rft_dat=%3Cproquest_hal_p%3E3039805984%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039805984&rft_id=info:pmid/&rfr_iscdi=true