Characterization of the Edge States in Colloidal Bi2Se3 Platelets

The remarkable development of colloidal nanocrystals with controlled dimensions and surface chemistry has resulted in vast optoelectronic applications. But can they also form a platform for quantum materials, in which electronic coherence is key? Here, we use colloidal, two-dimensional Bi2Se3 crysta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2024-05, Vol.24 (17), p.5110-5116
Hauptverfasser: Moes, Jesper R., Vliem, Jara F., de Melo, Pedro M. M. C., Wigmans, Thomas C., Botello-Méndez, Andrés R., Mendes, Rafael G., van Brenk, Ella F., Swart, Ingmar, Maisel Licerán, Lucas, Stoof, Henk T. C., Delerue, Christophe, Zanolli, Zeila, Vanmaekelbergh, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The remarkable development of colloidal nanocrystals with controlled dimensions and surface chemistry has resulted in vast optoelectronic applications. But can they also form a platform for quantum materials, in which electronic coherence is key? Here, we use colloidal, two-dimensional Bi2Se3 crystals, with precise and uniform thickness and finite lateral dimensions in the 100 nm range, to study the evolution of a topological insulator from three to two dimensions. For a thickness of 4–6 quintuple layers, scanning tunneling spectroscopy shows an 8 nm wide, nonscattering state encircling the platelet. We discuss the nature of this edge state with a low-energy continuum model and ab initio GW-Tight Binding theory. Our results also provide an indication of the maximum density of such states on a device.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.3c04460