Scaling Limit for Stochastic Control Problems in Population Dynamics

Going from a scaling approach for birth/death processes, we investigate the convergence of solutions to Backward Stochastic Differential Equations driven a sequence of converging martingales. We apply our results to non-Markovian stochastic control problems for discrete population models. In particu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics & optimization 2023-08, Vol.88 (1), p.14, Article 14
Hauptverfasser: Jusselin, Paul, Mastrolia, Thibaut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Going from a scaling approach for birth/death processes, we investigate the convergence of solutions to Backward Stochastic Differential Equations driven a sequence of converging martingales. We apply our results to non-Markovian stochastic control problems for discrete population models. In particular we describe how the values and optimal controls of control problems converge when the models converge towards a continuous population model.
ISSN:0095-4616
1432-0606
DOI:10.1007/s00245-023-09989-x