Selective, Controllable, and Reversible Aggregation of Polystyrene Latex Microspheres via DNA Hybridization

The directed three-dimensional self-assembly of microstructures and nanostructures through the selective hybridization of DNA is the focus of great interest toward the fabrication of new materials. Single-stranded DNA is covalently attached to polystyrene latex microspheres. Single-stranded DNA can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2005-06, Vol.21 (12), p.5562-5569
Hauptverfasser: Rogers, Phillip H, Michel, Eric, Bauer, Carl A, Vanderet, Stephen, Hansen, Daniel, Roberts, Bradley K, Calvez, Antoine, Crews, Jackson B, Lau, Kwok O, Wood, Alistair, Pine, David J, Schwartz, Peter V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The directed three-dimensional self-assembly of microstructures and nanostructures through the selective hybridization of DNA is the focus of great interest toward the fabrication of new materials. Single-stranded DNA is covalently attached to polystyrene latex microspheres. Single-stranded DNA can function as a sequence-selective Velcro by only bonding to another strand of DNA that has a complementary sequence. The attachment of the DNA increases the charge stabilization of the microspheres and allows controllable aggregation of microspheres by hybridization of complementary DNA sequences. In a mixture of microspheres derivatized with different sequences of DNA, microspheres with complementary DNA form aggregates, while microspheres with noncomplementary sequences remain suspended. The process is reversible by heating, with a characteristic “aggregate dissociation temperature” that is predictably dependent on salt concentration, and the evolution of aggregate dissociation with temperature is observed with optical microscopy.
ISSN:0743-7463
1520-5827
DOI:10.1021/la046790y