Plasma-enabled multifunctional platform for gram-scale production of graphene and derivatives

•A novel versatile platform for continuous production of graphene sheets, derivatives & hybrids.•Drawbacks associated with conventional methods are circumvented with the present method.•The presence of N-graphene monolayer sheets (∼45 %) is the highest reported in the literature. Taking advantag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied materials today 2024-02, Vol.36, p.102056, Article 102056
Hauptverfasser: Dias, Ana, Felizardo, Edgar, Bundaleska, Neli, Abrashev, Miroslav, Kissovski, Jivko, Ferraria, Ana M., Rego, Ana M., Strunskus, Thomas, Carvalho, Patrícia A., Almeida, Amélia, Zavašnik, Janez, Kovacevic, Eva, Berndt, Johannes, Bundaleski, Nenad, Ammar, Mohammed-Ramzi, Teodoro, Orlando M.N.D., Cvelbar, Uroš, Alves, Luís L., Gonçalves, Bruno, Tatarova, Elena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•A novel versatile platform for continuous production of graphene sheets, derivatives & hybrids.•Drawbacks associated with conventional methods are circumvented with the present method.•The presence of N-graphene monolayer sheets (∼45 %) is the highest reported in the literature. Taking advantage of the high-energy-density microwave plasma environment as a unique 3D space for the self-assembly of free-standing nanostructures, a novel multifunctional platform for the continuous production of graphene and derivatives at the gram scale was developed. The platform is supported by a prototype plasma machine capable of performing a wide variety of industrially applicable processes within a single assembly environment. Free-standing graphene and nitrogen doped graphene, i.e., N-graphene nanosheets, and hybrid nanocomposites are assembled in a one-step process in seconds under atmospheric pressure conditions without the need of post-treatment. A single custom-designed machine enables the synthesis of an extensive array of hybrid nanomaterials featuring metal nanoparticles anchored in graphene. The method enables the conversion of a wide range of low-cost feedstock (e.g., ethanol, acetonitrile, etc.) into graphene and derivatives at a rate up to 30 mg/min. The resulting N-graphene sheets exhibit high quality, as evidenced by the highest reported presence of single atomic layers (45%), high ratio of 2D/G peak intensities in Raman spectra and N/O atomic ratio greater than one. The use of the obtained N-graphene in low secondary electron emission applications and in inkjet printing are explored. The presented plasma machine embodies significant potential to increase the effectiveness of plasma-driven process regarding productivity, costs and turnaround time. [Display omitted]
ISSN:2352-9407
2352-9415
DOI:10.1016/j.apmt.2024.102056