Semi-Decentralized Prediction Method for Energy-Efficient Wireless Sensor Networks

[graphicalabstract] Addressing key challenges in Wireless Sensor Networks (WSNs) such as network lifetime, and energy balance, this paper introduces the Semi-Decentralized Prediction Method (SDPM) for energy-efficient wireless sensor networks. This approach enhances energy efficiency by combining cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors letters 2024-04, Vol.8 (4), p.1-4
Hauptverfasser: Abdoulaye, Imourane, Belleudy, Cecile, Rodriguez, Laurent, Miramond, Benoit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[graphicalabstract] Addressing key challenges in Wireless Sensor Networks (WSNs) such as network lifetime, and energy balance, this paper introduces the Semi-Decentralized Prediction Method (SDPM) for energy-efficient wireless sensor networks. This approach enhances energy efficiency by combining clustering principles with data prediction for smart Cluster-Head (CH) selection. SDPM facilitates the periodic election of an effective CH from among the cluster-nodes, who then predicts data for the nodes within the cluster, thereby reducing transmission and conserving energy. Our findings demonstrate SDPM's significant impact on reducing energy consumption, promising for real-world WSNs to achieve longer network lifetime and better energy management.
ISSN:2475-1472
2475-1472
DOI:10.1109/LSENS.2024.3378520