Semi-Decentralized Prediction Method for Energy-Efficient Wireless Sensor Networks
[graphicalabstract] Addressing key challenges in Wireless Sensor Networks (WSNs) such as network lifetime, and energy balance, this paper introduces the Semi-Decentralized Prediction Method (SDPM) for energy-efficient wireless sensor networks. This approach enhances energy efficiency by combining cl...
Gespeichert in:
Veröffentlicht in: | IEEE sensors letters 2024-04, Vol.8 (4), p.1-4 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [graphicalabstract] Addressing key challenges in Wireless Sensor Networks (WSNs) such as network lifetime, and energy balance, this paper introduces the Semi-Decentralized Prediction Method (SDPM) for energy-efficient wireless sensor networks. This approach enhances energy efficiency by combining clustering principles with data prediction for smart Cluster-Head (CH) selection. SDPM facilitates the periodic election of an effective CH from among the cluster-nodes, who then predicts data for the nodes within the cluster, thereby reducing transmission and conserving energy. Our findings demonstrate SDPM's significant impact on reducing energy consumption, promising for real-world WSNs to achieve longer network lifetime and better energy management. |
---|---|
ISSN: | 2475-1472 2475-1472 |
DOI: | 10.1109/LSENS.2024.3378520 |