Error bounds for deep ReLU networks using the Kolmogorov–Arnold superposition theorem
We prove a theorem concerning the approximation of multivariate functions by deep ReLU networks, for which the curse of the dimensionality is lessened. Our theorem is based on a constructive proof of the Kolmogorov–Arnold superposition theorem, and on a subset of multivariate continuous functions wh...
Gespeichert in:
Veröffentlicht in: | Neural networks 2020-09, Vol.129, p.1-6 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a theorem concerning the approximation of multivariate functions by deep ReLU networks, for which the curse of the dimensionality is lessened. Our theorem is based on a constructive proof of the Kolmogorov–Arnold superposition theorem, and on a subset of multivariate continuous functions whose outer superposition functions can be efficiently approximated by deep ReLU networks. |
---|---|
ISSN: | 0893-6080 1879-2782 |
DOI: | 10.1016/j.neunet.2019.12.013 |