Gas turbine monitoring using neural network dynamic nonlinear autoregressive with external exogenous input modelling

The main purpose of the present work is to propose an effective tool which allows to ensure the protection and the safety measures against the instability phenomena in a gas turbine based on the modelling of its dynamic behaviour. In order to provide an efficient diagnostic strategy for this type of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics and computers in simulation 2021-01, Vol.179, p.23-47
Hauptverfasser: Rahmoune, Mohamed Ben, Hafaifa, Ahmed, Kouzou, Abdellah, Chen, XiaoQi, Chaibet, Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main purpose of the present work is to propose an effective tool which allows to ensure the protection and the safety measures against the instability phenomena in a gas turbine based on the modelling of its dynamic behaviour. In order to provide an efficient diagnostic strategy for this type of rotating machine, a supervision system based on the development of artificial neural network tools is proposed in this paper. Where, the dynamic nonlinear autoregressive approach with external exogenous input NARX is used for the identification of the studied system dynamics, to monitor the vibrational dynamics of the operating turbine. This leads to establishing a solution for the different ranges of rotational speed and ensuring dynamic stability through the vibration indicators, determined by the proposed neural network approach. Also, offer a normalized mean square error on the order of 3.8414e−3 for the high-pressure turbine, 1.29152e−1 for the gas control valve and 2.12090 e-4 for the air control valve. Furthermore, it permits the vibration monitoring and efficiently extracts the essentials of dynamic model behaviour, to effectively size the operating gas turbine system. The obtained results of the application of the proposed approach on the gas turbine system presented in this paper proves its ability for the detection and the management on real-time of the eventual failures caused mainly by intrinsic vibrations. On the other side, these results prove clearly the effectiveness of the use of the artificial neural networks as a very powerful calculation tools in the modelling of complex dynamic systems.
ISSN:0378-4754
1872-7166
DOI:10.1016/j.matcom.2020.07.017