On balanced and abelian properties of circular words over a ternary alphabet

We revisit the problem of extending the notion of a balanced circular word and focus on the case of a ternary alphabet. Basing on the fact that the upper bound for the abelian complexity of balanced ternary words is 3 we provide a classification of all circular words over a ternary alphabet with abe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2023-01, Vol.939, p.227-236
Hauptverfasser: Bulgakova, D.V., Buzhinsky, N., Goncharov, Y.O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We revisit the problem of extending the notion of a balanced circular word and focus on the case of a ternary alphabet. Basing on the fact that the upper bound for the abelian complexity of balanced ternary words is 3 we provide a classification of all circular words over a ternary alphabet with abelian complexity subject to this bound. This result also allows us to construct an uncountable set of bi-infinite aperiodic words with abelian complexity equal to 3.
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2022.10.027