On balanced and abelian properties of circular words over a ternary alphabet
We revisit the problem of extending the notion of a balanced circular word and focus on the case of a ternary alphabet. Basing on the fact that the upper bound for the abelian complexity of balanced ternary words is 3 we provide a classification of all circular words over a ternary alphabet with abe...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2023-01, Vol.939, p.227-236 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We revisit the problem of extending the notion of a balanced circular word and focus on the case of a ternary alphabet. Basing on the fact that the upper bound for the abelian complexity of balanced ternary words is 3 we provide a classification of all circular words over a ternary alphabet with abelian complexity subject to this bound. This result also allows us to construct an uncountable set of bi-infinite aperiodic words with abelian complexity equal to 3. |
---|---|
ISSN: | 0304-3975 1879-2294 |
DOI: | 10.1016/j.tcs.2022.10.027 |