Compositional dependence of crystallization and chemical durability in alkali aluminoborosilicate glasses

This study aims to understand the impact of composition on crystallization and chemical durability in alkali aluminoborosilicate based model nuclear waste glasses designed in the peralkaline, metaluminous and peraluminous regimes. The glasses have been thermally treated using the canister centerline...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of non-crystalline solids 2022-08, Vol.590, p.121694, Article 121694
Hauptverfasser: Deshkar, Ambar, Parruzot, Benjamin, Youngman, Randall E., Gulbiten, Ozgur, Vienna, John D., Goel, Ashutosh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aims to understand the impact of composition on crystallization and chemical durability in alkali aluminoborosilicate based model nuclear waste glasses designed in the peralkaline, metaluminous and peraluminous regimes. The glasses have been thermally treated using the canister centerline cooling (CCC) schedule. The chemical durability of both parent and CCC-treated glasses has been assessed by product consistency test (PCT-B) for 120 days. The peraluminous glasses exhibit the highest dissolution rates, followed by peralkaline and metaluminous glasses. In general, increasing B2O3 content in glasses tends to suppress nepheline formation, thus, decreasing the negative impact of nepheline on durability of the final waste form. However, higher B2O3 content itself may result in detrimental impact on the durability of the final waste form. The thermal history has been shown to have a significant impact on the durability of the glasses.
ISSN:0022-3093
1873-4812
DOI:10.1016/j.jnoncrysol.2022.121694