Amphiphilic Dendrimer as Potent Antibacterial against Drug-Resistant Bacteria in Mouse Models of Human Infectious Diseases

Modern medicine continues to struggle against antibiotic-resistant bacterial pathogens. Among the pathogens of critical concerns are the multidrug-resistant (MDR) Pseudomonas aeruginosa, Staphylococcus aureus, and Klebsiella pneumoniae. These pathogens are major causes of nosocomial infections among...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS infectious diseases 2024-02, Vol.10 (2), p.453-466
Hauptverfasser: King, Noah, Dhumal, Dinesh, Lew, Shi Qian, Kuo, Shanny Hsuan, Galanakou, Christina, Oh, Myung Whan, Chong, Sook Yin, Zhang, Nian, Lee, Leo Tsz On, Hayouka, Zvi, Peng, Ling, Lau, Gee W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Modern medicine continues to struggle against antibiotic-resistant bacterial pathogens. Among the pathogens of critical concerns are the multidrug-resistant (MDR) Pseudomonas aeruginosa, Staphylococcus aureus, and Klebsiella pneumoniae. These pathogens are major causes of nosocomial infections among immunocompromised individuals, involving major organs such as lung, skin, spleen, kidney, liver, and bloodstream. Therefore, novel approaches are direly needed. Recently, we developed an amphiphilic dendrimer DDC18–8A exhibiting high antibacterial and antibiofilm efficacy in vitro. DDC18–8A is composed of a long hydrophobic alkyl chain and a small hydrophilic poly­(amidoamine) dendron bearing amine terminals, exerting its antibacterial activity by attaching and inserting itself into bacterial membranes to trigger cell lysis. Here, we examined the pharmacokinetics and in vivo toxicity as well as the antibacterial efficacy of DDC18–8A in mouse models of human infectious diseases. Remarkably, DDC18–8A significantly reduced the bacterial burden in mouse models of acute pneumonia and bacteremia by P. aeruginosa, methicillin-resistant S. aureus (MRSA), and carbapenem-resistant K. pneumoniae and neutropenic soft tissue infection by P. aeruginosa and MRSA. Most importantly, DDC18–8A outperformed pathogen-specific antibiotics against all three pathogens by achieving a similar bacterial clearance at 10-fold lower therapeutic concentrations. In addition, it showed superior stability and biodistribution in vivo, with excellent safety profiles yet without any observable abnormalities in histopathological analysis of major organs, blood serum biochemistry, and hematology. Collectively, we provide strong evidence that DDC18–8A is a promising alternative to the currently prescribed antibiotics in addressing challenges associated with nosocomial infections by MDR pathogens.
ISSN:2373-8227
2373-8227
DOI:10.1021/acsinfecdis.3c00425