Reconnection Inside a Dipolarization Front of a Diverging Earthward Fast Flow

We examine a Dipolarization Front (DF) event with an embedded electron diffusion region (EDR), observed by the Magnetospheric Multiscale (MMS) spacecraft on 08 September 2018 at 14:51:30 UT in the Earth's magnetotail by applying multi‐scale multipoint analysis methods. In order to study the lar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2024-01, Vol.129 (1), p.n/a
Hauptverfasser: Hosner, M., Nakamura, R., Schmid, D., Nakamura, T. K. M., Panov, E. V., Volwerk, M., Vörös, Z., Roberts, O. W., Blasl, K. A., Settino, A., Korovinskiy, D., Marshall, A. T., Denton, R. E., Burch, J. L., Giles, B. L., Torbert, R. B., Le Contel, O., Escoubet, C. P., Dandouras, I. S., Carr, C., Fazakerley, A. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Journal of geophysical research. Space physics
container_volume 129
creator Hosner, M.
Nakamura, R.
Schmid, D.
Nakamura, T. K. M.
Panov, E. V.
Volwerk, M.
Vörös, Z.
Roberts, O. W.
Blasl, K. A.
Settino, A.
Korovinskiy, D.
Marshall, A. T.
Denton, R. E.
Burch, J. L.
Giles, B. L.
Torbert, R. B.
Le Contel, O.
Escoubet, C. P.
Dandouras, I. S.
Carr, C.
Fazakerley, A. N.
description We examine a Dipolarization Front (DF) event with an embedded electron diffusion region (EDR), observed by the Magnetospheric Multiscale (MMS) spacecraft on 08 September 2018 at 14:51:30 UT in the Earth's magnetotail by applying multi‐scale multipoint analysis methods. In order to study the large‐scale context of this DF, we use conjunction observations of the Cluster spacecraft together with MMS. A polynomial magnetic field reconstruction technique is applied to MMS data to characterize the embedded electron current sheet including its velocity and the X‐line exhaust opening angle. Our results show that the MMS and Cluster spacecraft were located in two counter‐rotating vortex flows, and such flows may distort a flux tube in a way that the local magnetic shear angle is increased and localized magnetic reconnection may be triggered. Using multi‐point data from MMS we further show that the local normalized reconnection rate is in the range of R ∼ 0.16 to 0.18. We find a highly asymmetric electron in‐ and outflow structure, consistent with previous simulations on strong guide‐field reconnection events. This study shows that magnetic reconnection may not only take place at large‐scale stable magnetopause or magnetotail current sheets but also in transient localized current sheets, produced as a consequence of the interaction between the fast Earthward flows and the Earth's dipole field. Plain Language Summary Magnetic Reconnection is a key energy conversion process, where magnetic energy is converted into kinetic energy of plasma particles. During this process the magnetic field topology changes and the plasma particles decouple from the magnetic field in the so‐called diffusion region and get accelerated, forming a fast outflow jet. Over the last decades, hints arise that reconnection can take place at many different places in the magnetosphere and also very locally and intermittently. Fast plasma flows in the Magnetotail, moving toward the Earth, are assumed to be a consequence of magnetic reconnection, and are often accompanied by dipolar‐shaped magnetic flux bundles, embedded into them. The leading edges of such flux bundles are called dipolarization fronts (DF). In this work, we investigate a DF event, which hosts a diffusion region. First, we study the large‐scale characteristics of the DF, by utilizing data from both the Magnetospheric Multiscale (MMS) and the Cluster mission, that observe different regions of the event almost simultaneously. Second, w
doi_str_mv 10.1029/2023JA031976
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04460458v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919440810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3791-a81c2149645a5557cb4cbc9d5d1be142f1725202bfcf3cb2e38eeddd81f0f2253</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsGhv_oCAJ8HqfibZY6hNP6gIRc_LZrNpt8Rs3U1b6q9326h4ci4zvPPwMvMCcIPgA4KYP2KIySyDBPEkPgM9jGI-4BTi85-ZpPAS9L1fw1BpkBDrgeeFVrZptGqNbaJp402pIxk9mY2tpTOf8qTnzjZtZKvTZqfd0jTLaCRdu9pLV0a59G2U13Z_DS4qWXvd_-5X4C0fvQ4ng_nLeDrM5gNFEo4GMkUKI8pjyiRjLFEFVYXiJStRoRHFFUowC_8UlaqIKrAmqdZlWaaoghXGjFyBu853JWuxceZduoOw0ohJNhdHDVIaQ8rSHQrsbcdunP3Yat-Ktd26JpwnMEec0pAFDNR9RylnvXe6-rVFUBzzFX_zDTjp8L2p9eFfVszGi4ylmCDyBZgDebo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919440810</pqid></control><display><type>article</type><title>Reconnection Inside a Dipolarization Front of a Diverging Earthward Fast Flow</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hosner, M. ; Nakamura, R. ; Schmid, D. ; Nakamura, T. K. M. ; Panov, E. V. ; Volwerk, M. ; Vörös, Z. ; Roberts, O. W. ; Blasl, K. A. ; Settino, A. ; Korovinskiy, D. ; Marshall, A. T. ; Denton, R. E. ; Burch, J. L. ; Giles, B. L. ; Torbert, R. B. ; Le Contel, O. ; Escoubet, C. P. ; Dandouras, I. S. ; Carr, C. ; Fazakerley, A. N.</creator><creatorcontrib>Hosner, M. ; Nakamura, R. ; Schmid, D. ; Nakamura, T. K. M. ; Panov, E. V. ; Volwerk, M. ; Vörös, Z. ; Roberts, O. W. ; Blasl, K. A. ; Settino, A. ; Korovinskiy, D. ; Marshall, A. T. ; Denton, R. E. ; Burch, J. L. ; Giles, B. L. ; Torbert, R. B. ; Le Contel, O. ; Escoubet, C. P. ; Dandouras, I. S. ; Carr, C. ; Fazakerley, A. N.</creatorcontrib><description>We examine a Dipolarization Front (DF) event with an embedded electron diffusion region (EDR), observed by the Magnetospheric Multiscale (MMS) spacecraft on 08 September 2018 at 14:51:30 UT in the Earth's magnetotail by applying multi‐scale multipoint analysis methods. In order to study the large‐scale context of this DF, we use conjunction observations of the Cluster spacecraft together with MMS. A polynomial magnetic field reconstruction technique is applied to MMS data to characterize the embedded electron current sheet including its velocity and the X‐line exhaust opening angle. Our results show that the MMS and Cluster spacecraft were located in two counter‐rotating vortex flows, and such flows may distort a flux tube in a way that the local magnetic shear angle is increased and localized magnetic reconnection may be triggered. Using multi‐point data from MMS we further show that the local normalized reconnection rate is in the range of R ∼ 0.16 to 0.18. We find a highly asymmetric electron in‐ and outflow structure, consistent with previous simulations on strong guide‐field reconnection events. This study shows that magnetic reconnection may not only take place at large‐scale stable magnetopause or magnetotail current sheets but also in transient localized current sheets, produced as a consequence of the interaction between the fast Earthward flows and the Earth's dipole field. Plain Language Summary Magnetic Reconnection is a key energy conversion process, where magnetic energy is converted into kinetic energy of plasma particles. During this process the magnetic field topology changes and the plasma particles decouple from the magnetic field in the so‐called diffusion region and get accelerated, forming a fast outflow jet. Over the last decades, hints arise that reconnection can take place at many different places in the magnetosphere and also very locally and intermittently. Fast plasma flows in the Magnetotail, moving toward the Earth, are assumed to be a consequence of magnetic reconnection, and are often accompanied by dipolar‐shaped magnetic flux bundles, embedded into them. The leading edges of such flux bundles are called dipolarization fronts (DF). In this work, we investigate a DF event, which hosts a diffusion region. First, we study the large‐scale characteristics of the DF, by utilizing data from both the Magnetospheric Multiscale (MMS) and the Cluster mission, that observe different regions of the event almost simultaneously. Second, we performed a 3D magnetic field reconstruction technique and compared the results to MMS data, to investigate the event on small scales. Key Points A thin current sheet inside a dipolarization front, embedded in a diverging flow is analyzed using a polynomial reconstruction technique Transient reconnection event is detected in a high magnetic shear region, where the magnetic field is deflected due to duskward fast plasma flow The reconstructed current sheet has a guide field of ∼1.8 the reconnecting component with normalized reconnection rate between 0.16 and 0.18</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2023JA031976</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>cluster ; Cluster Mission ; Cluster spacecraft ; Current sheets ; Diffusion rate ; dipolarization front ; Dipoles ; Earth ; Electron diffusion ; Energy conversion ; Fluctuations ; Geomagnetic tail ; Kinetic energy ; Leading edges ; Magnetic fields ; Magnetic flux ; Magnetic reconnection ; Magnetopause ; Magnetospheres ; Magnetotails ; MMS ; Outflow ; polynomial reconstruction ; Polynomials ; Reconstruction ; Sciences of the Universe ; Spacecraft ; Topology ; Vortex flow</subject><ispartof>Journal of geophysical research. Space physics, 2024-01, Vol.129 (1), p.n/a</ispartof><rights>2024. American Geophysical Union. All Rights Reserved.</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3791-a81c2149645a5557cb4cbc9d5d1be142f1725202bfcf3cb2e38eeddd81f0f2253</citedby><cites>FETCH-LOGICAL-c3791-a81c2149645a5557cb4cbc9d5d1be142f1725202bfcf3cb2e38eeddd81f0f2253</cites><orcidid>0000-0003-3609-235X ; 0000-0001-7818-4338 ; 0000-0003-4475-6769 ; 0000-0003-2713-7966 ; 0000-0002-7121-1118 ; 0000-0002-7694-3422 ; 0000-0003-4550-2947 ; 0000-0002-3913-1353 ; 0000-0002-5814-1717 ; 0000-0002-6677-4194 ; 0000-0001-7188-8690 ; 0000-0003-1821-7390 ; 0000-0001-8054-825X ; 0000-0002-4455-3403 ; 0000-0003-0452-8403 ; 0000-0002-2620-9211 ; 0000-0001-7597-238X ; 0000-0002-6398-337X ; 0000-0002-6445-4402 ; 0000-0002-6879-3970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2023JA031976$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2023JA031976$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04460458$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hosner, M.</creatorcontrib><creatorcontrib>Nakamura, R.</creatorcontrib><creatorcontrib>Schmid, D.</creatorcontrib><creatorcontrib>Nakamura, T. K. M.</creatorcontrib><creatorcontrib>Panov, E. V.</creatorcontrib><creatorcontrib>Volwerk, M.</creatorcontrib><creatorcontrib>Vörös, Z.</creatorcontrib><creatorcontrib>Roberts, O. W.</creatorcontrib><creatorcontrib>Blasl, K. A.</creatorcontrib><creatorcontrib>Settino, A.</creatorcontrib><creatorcontrib>Korovinskiy, D.</creatorcontrib><creatorcontrib>Marshall, A. T.</creatorcontrib><creatorcontrib>Denton, R. E.</creatorcontrib><creatorcontrib>Burch, J. L.</creatorcontrib><creatorcontrib>Giles, B. L.</creatorcontrib><creatorcontrib>Torbert, R. B.</creatorcontrib><creatorcontrib>Le Contel, O.</creatorcontrib><creatorcontrib>Escoubet, C. P.</creatorcontrib><creatorcontrib>Dandouras, I. S.</creatorcontrib><creatorcontrib>Carr, C.</creatorcontrib><creatorcontrib>Fazakerley, A. N.</creatorcontrib><title>Reconnection Inside a Dipolarization Front of a Diverging Earthward Fast Flow</title><title>Journal of geophysical research. Space physics</title><description>We examine a Dipolarization Front (DF) event with an embedded electron diffusion region (EDR), observed by the Magnetospheric Multiscale (MMS) spacecraft on 08 September 2018 at 14:51:30 UT in the Earth's magnetotail by applying multi‐scale multipoint analysis methods. In order to study the large‐scale context of this DF, we use conjunction observations of the Cluster spacecraft together with MMS. A polynomial magnetic field reconstruction technique is applied to MMS data to characterize the embedded electron current sheet including its velocity and the X‐line exhaust opening angle. Our results show that the MMS and Cluster spacecraft were located in two counter‐rotating vortex flows, and such flows may distort a flux tube in a way that the local magnetic shear angle is increased and localized magnetic reconnection may be triggered. Using multi‐point data from MMS we further show that the local normalized reconnection rate is in the range of R ∼ 0.16 to 0.18. We find a highly asymmetric electron in‐ and outflow structure, consistent with previous simulations on strong guide‐field reconnection events. This study shows that magnetic reconnection may not only take place at large‐scale stable magnetopause or magnetotail current sheets but also in transient localized current sheets, produced as a consequence of the interaction between the fast Earthward flows and the Earth's dipole field. Plain Language Summary Magnetic Reconnection is a key energy conversion process, where magnetic energy is converted into kinetic energy of plasma particles. During this process the magnetic field topology changes and the plasma particles decouple from the magnetic field in the so‐called diffusion region and get accelerated, forming a fast outflow jet. Over the last decades, hints arise that reconnection can take place at many different places in the magnetosphere and also very locally and intermittently. Fast plasma flows in the Magnetotail, moving toward the Earth, are assumed to be a consequence of magnetic reconnection, and are often accompanied by dipolar‐shaped magnetic flux bundles, embedded into them. The leading edges of such flux bundles are called dipolarization fronts (DF). In this work, we investigate a DF event, which hosts a diffusion region. First, we study the large‐scale characteristics of the DF, by utilizing data from both the Magnetospheric Multiscale (MMS) and the Cluster mission, that observe different regions of the event almost simultaneously. Second, we performed a 3D magnetic field reconstruction technique and compared the results to MMS data, to investigate the event on small scales. Key Points A thin current sheet inside a dipolarization front, embedded in a diverging flow is analyzed using a polynomial reconstruction technique Transient reconnection event is detected in a high magnetic shear region, where the magnetic field is deflected due to duskward fast plasma flow The reconstructed current sheet has a guide field of ∼1.8 the reconnecting component with normalized reconnection rate between 0.16 and 0.18</description><subject>cluster</subject><subject>Cluster Mission</subject><subject>Cluster spacecraft</subject><subject>Current sheets</subject><subject>Diffusion rate</subject><subject>dipolarization front</subject><subject>Dipoles</subject><subject>Earth</subject><subject>Electron diffusion</subject><subject>Energy conversion</subject><subject>Fluctuations</subject><subject>Geomagnetic tail</subject><subject>Kinetic energy</subject><subject>Leading edges</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Magnetic reconnection</subject><subject>Magnetopause</subject><subject>Magnetospheres</subject><subject>Magnetotails</subject><subject>MMS</subject><subject>Outflow</subject><subject>polynomial reconstruction</subject><subject>Polynomials</subject><subject>Reconstruction</subject><subject>Sciences of the Universe</subject><subject>Spacecraft</subject><subject>Topology</subject><subject>Vortex flow</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsGhv_oCAJ8HqfibZY6hNP6gIRc_LZrNpt8Rs3U1b6q9326h4ci4zvPPwMvMCcIPgA4KYP2KIySyDBPEkPgM9jGI-4BTi85-ZpPAS9L1fw1BpkBDrgeeFVrZptGqNbaJp402pIxk9mY2tpTOf8qTnzjZtZKvTZqfd0jTLaCRdu9pLV0a59G2U13Z_DS4qWXvd_-5X4C0fvQ4ng_nLeDrM5gNFEo4GMkUKI8pjyiRjLFEFVYXiJStRoRHFFUowC_8UlaqIKrAmqdZlWaaoghXGjFyBu853JWuxceZduoOw0ohJNhdHDVIaQ8rSHQrsbcdunP3Yat-Ktd26JpwnMEec0pAFDNR9RylnvXe6-rVFUBzzFX_zDTjp8L2p9eFfVszGi4ylmCDyBZgDebo</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Hosner, M.</creator><creator>Nakamura, R.</creator><creator>Schmid, D.</creator><creator>Nakamura, T. K. M.</creator><creator>Panov, E. V.</creator><creator>Volwerk, M.</creator><creator>Vörös, Z.</creator><creator>Roberts, O. W.</creator><creator>Blasl, K. A.</creator><creator>Settino, A.</creator><creator>Korovinskiy, D.</creator><creator>Marshall, A. T.</creator><creator>Denton, R. E.</creator><creator>Burch, J. L.</creator><creator>Giles, B. L.</creator><creator>Torbert, R. B.</creator><creator>Le Contel, O.</creator><creator>Escoubet, C. P.</creator><creator>Dandouras, I. S.</creator><creator>Carr, C.</creator><creator>Fazakerley, A. N.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union/Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3609-235X</orcidid><orcidid>https://orcid.org/0000-0001-7818-4338</orcidid><orcidid>https://orcid.org/0000-0003-4475-6769</orcidid><orcidid>https://orcid.org/0000-0003-2713-7966</orcidid><orcidid>https://orcid.org/0000-0002-7121-1118</orcidid><orcidid>https://orcid.org/0000-0002-7694-3422</orcidid><orcidid>https://orcid.org/0000-0003-4550-2947</orcidid><orcidid>https://orcid.org/0000-0002-3913-1353</orcidid><orcidid>https://orcid.org/0000-0002-5814-1717</orcidid><orcidid>https://orcid.org/0000-0002-6677-4194</orcidid><orcidid>https://orcid.org/0000-0001-7188-8690</orcidid><orcidid>https://orcid.org/0000-0003-1821-7390</orcidid><orcidid>https://orcid.org/0000-0001-8054-825X</orcidid><orcidid>https://orcid.org/0000-0002-4455-3403</orcidid><orcidid>https://orcid.org/0000-0003-0452-8403</orcidid><orcidid>https://orcid.org/0000-0002-2620-9211</orcidid><orcidid>https://orcid.org/0000-0001-7597-238X</orcidid><orcidid>https://orcid.org/0000-0002-6398-337X</orcidid><orcidid>https://orcid.org/0000-0002-6445-4402</orcidid><orcidid>https://orcid.org/0000-0002-6879-3970</orcidid></search><sort><creationdate>202401</creationdate><title>Reconnection Inside a Dipolarization Front of a Diverging Earthward Fast Flow</title><author>Hosner, M. ; Nakamura, R. ; Schmid, D. ; Nakamura, T. K. M. ; Panov, E. V. ; Volwerk, M. ; Vörös, Z. ; Roberts, O. W. ; Blasl, K. A. ; Settino, A. ; Korovinskiy, D. ; Marshall, A. T. ; Denton, R. E. ; Burch, J. L. ; Giles, B. L. ; Torbert, R. B. ; Le Contel, O. ; Escoubet, C. P. ; Dandouras, I. S. ; Carr, C. ; Fazakerley, A. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3791-a81c2149645a5557cb4cbc9d5d1be142f1725202bfcf3cb2e38eeddd81f0f2253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>cluster</topic><topic>Cluster Mission</topic><topic>Cluster spacecraft</topic><topic>Current sheets</topic><topic>Diffusion rate</topic><topic>dipolarization front</topic><topic>Dipoles</topic><topic>Earth</topic><topic>Electron diffusion</topic><topic>Energy conversion</topic><topic>Fluctuations</topic><topic>Geomagnetic tail</topic><topic>Kinetic energy</topic><topic>Leading edges</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Magnetic reconnection</topic><topic>Magnetopause</topic><topic>Magnetospheres</topic><topic>Magnetotails</topic><topic>MMS</topic><topic>Outflow</topic><topic>polynomial reconstruction</topic><topic>Polynomials</topic><topic>Reconstruction</topic><topic>Sciences of the Universe</topic><topic>Spacecraft</topic><topic>Topology</topic><topic>Vortex flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosner, M.</creatorcontrib><creatorcontrib>Nakamura, R.</creatorcontrib><creatorcontrib>Schmid, D.</creatorcontrib><creatorcontrib>Nakamura, T. K. M.</creatorcontrib><creatorcontrib>Panov, E. V.</creatorcontrib><creatorcontrib>Volwerk, M.</creatorcontrib><creatorcontrib>Vörös, Z.</creatorcontrib><creatorcontrib>Roberts, O. W.</creatorcontrib><creatorcontrib>Blasl, K. A.</creatorcontrib><creatorcontrib>Settino, A.</creatorcontrib><creatorcontrib>Korovinskiy, D.</creatorcontrib><creatorcontrib>Marshall, A. T.</creatorcontrib><creatorcontrib>Denton, R. E.</creatorcontrib><creatorcontrib>Burch, J. L.</creatorcontrib><creatorcontrib>Giles, B. L.</creatorcontrib><creatorcontrib>Torbert, R. B.</creatorcontrib><creatorcontrib>Le Contel, O.</creatorcontrib><creatorcontrib>Escoubet, C. P.</creatorcontrib><creatorcontrib>Dandouras, I. S.</creatorcontrib><creatorcontrib>Carr, C.</creatorcontrib><creatorcontrib>Fazakerley, A. N.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosner, M.</au><au>Nakamura, R.</au><au>Schmid, D.</au><au>Nakamura, T. K. M.</au><au>Panov, E. V.</au><au>Volwerk, M.</au><au>Vörös, Z.</au><au>Roberts, O. W.</au><au>Blasl, K. A.</au><au>Settino, A.</au><au>Korovinskiy, D.</au><au>Marshall, A. T.</au><au>Denton, R. E.</au><au>Burch, J. L.</au><au>Giles, B. L.</au><au>Torbert, R. B.</au><au>Le Contel, O.</au><au>Escoubet, C. P.</au><au>Dandouras, I. S.</au><au>Carr, C.</au><au>Fazakerley, A. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconnection Inside a Dipolarization Front of a Diverging Earthward Fast Flow</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2024-01</date><risdate>2024</risdate><volume>129</volume><issue>1</issue><epage>n/a</epage><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>We examine a Dipolarization Front (DF) event with an embedded electron diffusion region (EDR), observed by the Magnetospheric Multiscale (MMS) spacecraft on 08 September 2018 at 14:51:30 UT in the Earth's magnetotail by applying multi‐scale multipoint analysis methods. In order to study the large‐scale context of this DF, we use conjunction observations of the Cluster spacecraft together with MMS. A polynomial magnetic field reconstruction technique is applied to MMS data to characterize the embedded electron current sheet including its velocity and the X‐line exhaust opening angle. Our results show that the MMS and Cluster spacecraft were located in two counter‐rotating vortex flows, and such flows may distort a flux tube in a way that the local magnetic shear angle is increased and localized magnetic reconnection may be triggered. Using multi‐point data from MMS we further show that the local normalized reconnection rate is in the range of R ∼ 0.16 to 0.18. We find a highly asymmetric electron in‐ and outflow structure, consistent with previous simulations on strong guide‐field reconnection events. This study shows that magnetic reconnection may not only take place at large‐scale stable magnetopause or magnetotail current sheets but also in transient localized current sheets, produced as a consequence of the interaction between the fast Earthward flows and the Earth's dipole field. Plain Language Summary Magnetic Reconnection is a key energy conversion process, where magnetic energy is converted into kinetic energy of plasma particles. During this process the magnetic field topology changes and the plasma particles decouple from the magnetic field in the so‐called diffusion region and get accelerated, forming a fast outflow jet. Over the last decades, hints arise that reconnection can take place at many different places in the magnetosphere and also very locally and intermittently. Fast plasma flows in the Magnetotail, moving toward the Earth, are assumed to be a consequence of magnetic reconnection, and are often accompanied by dipolar‐shaped magnetic flux bundles, embedded into them. The leading edges of such flux bundles are called dipolarization fronts (DF). In this work, we investigate a DF event, which hosts a diffusion region. First, we study the large‐scale characteristics of the DF, by utilizing data from both the Magnetospheric Multiscale (MMS) and the Cluster mission, that observe different regions of the event almost simultaneously. Second, we performed a 3D magnetic field reconstruction technique and compared the results to MMS data, to investigate the event on small scales. Key Points A thin current sheet inside a dipolarization front, embedded in a diverging flow is analyzed using a polynomial reconstruction technique Transient reconnection event is detected in a high magnetic shear region, where the magnetic field is deflected due to duskward fast plasma flow The reconstructed current sheet has a guide field of ∼1.8 the reconnecting component with normalized reconnection rate between 0.16 and 0.18</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2023JA031976</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3609-235X</orcidid><orcidid>https://orcid.org/0000-0001-7818-4338</orcidid><orcidid>https://orcid.org/0000-0003-4475-6769</orcidid><orcidid>https://orcid.org/0000-0003-2713-7966</orcidid><orcidid>https://orcid.org/0000-0002-7121-1118</orcidid><orcidid>https://orcid.org/0000-0002-7694-3422</orcidid><orcidid>https://orcid.org/0000-0003-4550-2947</orcidid><orcidid>https://orcid.org/0000-0002-3913-1353</orcidid><orcidid>https://orcid.org/0000-0002-5814-1717</orcidid><orcidid>https://orcid.org/0000-0002-6677-4194</orcidid><orcidid>https://orcid.org/0000-0001-7188-8690</orcidid><orcidid>https://orcid.org/0000-0003-1821-7390</orcidid><orcidid>https://orcid.org/0000-0001-8054-825X</orcidid><orcidid>https://orcid.org/0000-0002-4455-3403</orcidid><orcidid>https://orcid.org/0000-0003-0452-8403</orcidid><orcidid>https://orcid.org/0000-0002-2620-9211</orcidid><orcidid>https://orcid.org/0000-0001-7597-238X</orcidid><orcidid>https://orcid.org/0000-0002-6398-337X</orcidid><orcidid>https://orcid.org/0000-0002-6445-4402</orcidid><orcidid>https://orcid.org/0000-0002-6879-3970</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2024-01, Vol.129 (1), p.n/a
issn 2169-9380
2169-9402
language eng
recordid cdi_hal_primary_oai_HAL_hal_04460458v1
source Wiley Online Library Journals Frontfile Complete
subjects cluster
Cluster Mission
Cluster spacecraft
Current sheets
Diffusion rate
dipolarization front
Dipoles
Earth
Electron diffusion
Energy conversion
Fluctuations
Geomagnetic tail
Kinetic energy
Leading edges
Magnetic fields
Magnetic flux
Magnetic reconnection
Magnetopause
Magnetospheres
Magnetotails
MMS
Outflow
polynomial reconstruction
Polynomials
Reconstruction
Sciences of the Universe
Spacecraft
Topology
Vortex flow
title Reconnection Inside a Dipolarization Front of a Diverging Earthward Fast Flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T13%3A10%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconnection%20Inside%20a%20Dipolarization%20Front%20of%20a%20Diverging%20Earthward%20Fast%20Flow&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Hosner,%20M.&rft.date=2024-01&rft.volume=129&rft.issue=1&rft.epage=n/a&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1029/2023JA031976&rft_dat=%3Cproquest_hal_p%3E2919440810%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919440810&rft_id=info:pmid/&rfr_iscdi=true