Reconnection Inside a Dipolarization Front of a Diverging Earthward Fast Flow

We examine a Dipolarization Front (DF) event with an embedded electron diffusion region (EDR), observed by the Magnetospheric Multiscale (MMS) spacecraft on 08 September 2018 at 14:51:30 UT in the Earth's magnetotail by applying multi‐scale multipoint analysis methods. In order to study the lar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2024-01, Vol.129 (1), p.n/a
Hauptverfasser: Hosner, M., Nakamura, R., Schmid, D., Nakamura, T. K. M., Panov, E. V., Volwerk, M., Vörös, Z., Roberts, O. W., Blasl, K. A., Settino, A., Korovinskiy, D., Marshall, A. T., Denton, R. E., Burch, J. L., Giles, B. L., Torbert, R. B., Le Contel, O., Escoubet, C. P., Dandouras, I. S., Carr, C., Fazakerley, A. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We examine a Dipolarization Front (DF) event with an embedded electron diffusion region (EDR), observed by the Magnetospheric Multiscale (MMS) spacecraft on 08 September 2018 at 14:51:30 UT in the Earth's magnetotail by applying multi‐scale multipoint analysis methods. In order to study the large‐scale context of this DF, we use conjunction observations of the Cluster spacecraft together with MMS. A polynomial magnetic field reconstruction technique is applied to MMS data to characterize the embedded electron current sheet including its velocity and the X‐line exhaust opening angle. Our results show that the MMS and Cluster spacecraft were located in two counter‐rotating vortex flows, and such flows may distort a flux tube in a way that the local magnetic shear angle is increased and localized magnetic reconnection may be triggered. Using multi‐point data from MMS we further show that the local normalized reconnection rate is in the range of R ∼ 0.16 to 0.18. We find a highly asymmetric electron in‐ and outflow structure, consistent with previous simulations on strong guide‐field reconnection events. This study shows that magnetic reconnection may not only take place at large‐scale stable magnetopause or magnetotail current sheets but also in transient localized current sheets, produced as a consequence of the interaction between the fast Earthward flows and the Earth's dipole field. Plain Language Summary Magnetic Reconnection is a key energy conversion process, where magnetic energy is converted into kinetic energy of plasma particles. During this process the magnetic field topology changes and the plasma particles decouple from the magnetic field in the so‐called diffusion region and get accelerated, forming a fast outflow jet. Over the last decades, hints arise that reconnection can take place at many different places in the magnetosphere and also very locally and intermittently. Fast plasma flows in the Magnetotail, moving toward the Earth, are assumed to be a consequence of magnetic reconnection, and are often accompanied by dipolar‐shaped magnetic flux bundles, embedded into them. The leading edges of such flux bundles are called dipolarization fronts (DF). In this work, we investigate a DF event, which hosts a diffusion region. First, we study the large‐scale characteristics of the DF, by utilizing data from both the Magnetospheric Multiscale (MMS) and the Cluster mission, that observe different regions of the event almost simultaneously. Second, w
ISSN:2169-9380
2169-9402
DOI:10.1029/2023JA031976