Denominator vectors and dimension vectors from triangulated surfaces

In a categorification of skew-symmetric cluster algebras,each cluster variable corresponds with an indecomposablemodule over the associated Jacobian algebra. Buan, Marshand Reiten studied when the denominator vector of eachcluster variable in an acyclic cluster algebra coincides with thedimension ve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebra 2024-03, Vol.641, p.620-647
1. Verfasser: Yurikusa, Toshiya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a categorification of skew-symmetric cluster algebras,each cluster variable corresponds with an indecomposablemodule over the associated Jacobian algebra. Buan, Marshand Reiten studied when the denominator vector of eachcluster variable in an acyclic cluster algebra coincides with thedimension vector of the corresponding module. In this paper,we give analogues of their results for cluster algebras fromtriangulated surfaces by comparing two kinds of intersectionnumbers of tagged arcs.
ISSN:0021-8693
1090-266X
DOI:10.1016/j.jalgebra.2023.12.002