Doubly Nonlinear Diffusive PDEs: New Existence Results via Generalized Wasserstein Gradient Flows

We prove an existence result for a large class of PDEs with a nonlinear Wasserstein gradient flow structure. We use the classical theory of Wasserstein gradient flow to derive an EDI formulation of our PDE and prove that under some integrability assumptions on the initial condition the PDE is satisf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 2024-12, Vol.56 (6), p.7043-7073
Hauptverfasser: Caillet, Thibault, Santambrogio, Filippo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove an existence result for a large class of PDEs with a nonlinear Wasserstein gradient flow structure. We use the classical theory of Wasserstein gradient flow to derive an EDI formulation of our PDE and prove that under some integrability assumptions on the initial condition the PDE is satisfied in the sense of distributions.
ISSN:0036-1410
1095-7154
DOI:10.1137/24M1639427