On the L2 rate of convergence in the limit from the Hartree to the Vlasov–Poisson equation
Using a new stability estimate for the difference of the square roots of two solutions of the Vlasov–Poisson equation, we obtain the convergence in the $L^2$ norm of the Wigner transform of a solution of the Hartree equation with Coulomb potential to a solution of the Vlasov–Poisson equation, with a...
Gespeichert in:
Veröffentlicht in: | Journal de l'École polytechnique. Mathématiques 2023-04, Vol.10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using a new stability estimate for the difference of the square roots of two solutions of the Vlasov–Poisson equation, we obtain the convergence in the $L^2$ norm of the Wigner transform of a solution of the Hartree equation with Coulomb potential to a solution of the Vlasov–Poisson equation, with a rate of convergence proportional to $\hbar$. This improves the $\hbar^{3/4-\varepsilon}$ rate of convergence in $L^2$ obtained in [L. Lafleche, C. Saffirio: Analysis & PDE, to appear]. Another reason of interest of this paper is the new method, reminiscent of the ones used to prove the mean-field limit from the many-body Schrödinger equation towards the Hartree–Fock equation for mixed states. |
---|---|
ISSN: | 2429-7100 2270-518X |
DOI: | 10.5802/jep.230 |