On the L2 rate of convergence in the limit from the Hartree to the Vlasov–Poisson equation

Using a new stability estimate for the difference of the square roots of two solutions of the Vlasov–Poisson equation, we obtain the convergence in the $L^2$ norm of the Wigner transform of a solution of the Hartree equation with Coulomb potential to a solution of the Vlasov–Poisson equation, with a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal de l'École polytechnique. Mathématiques 2023-04, Vol.10
Hauptverfasser: Chong, Jacky J., Lafleche, Laurent, Saffirio, Chiara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using a new stability estimate for the difference of the square roots of two solutions of the Vlasov–Poisson equation, we obtain the convergence in the $L^2$ norm of the Wigner transform of a solution of the Hartree equation with Coulomb potential to a solution of the Vlasov–Poisson equation, with a rate of convergence proportional to $\hbar$. This improves the $\hbar^{3/4-\varepsilon}$ rate of convergence in $L^2$ obtained in [L. Lafleche, C. Saffirio: Analysis & PDE, to appear]. Another reason of interest of this paper is the new method, reminiscent of the ones used to prove the mean-field limit from the many-body Schrödinger equation towards the Hartree–Fock equation for mixed states.
ISSN:2429-7100
2270-518X
DOI:10.5802/jep.230