Characterization of dissimilar liquids mixing in T-junction and offset T-junction microchannels
Micromixing process in microfluidic devices has been broadly employed in bio-, nano-, and environmental technologies using either miscible or immiscible liquids. However, there are limited experimental studies investigating the mixing process of different densities and viscosities liquids in relatio...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering Journal of process mechanical engineering, 2021-12, Vol.235 (6), p.1797-1806 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Micromixing process in microfluidic devices has been broadly employed in bio-, nano-, and environmental technologies using either miscible or immiscible liquids. However, there are limited experimental studies investigating the mixing process of different densities and viscosities liquids in relation to microfluidics. Therefore, the mixing process of propan-2-ol and water, water and sodium chloride solution, propan-2-ol and sodium chloride solution were experimented and reported at 5 ≤ Re ≤ 50 in T-junction and offset T-junction microchannels. For miscible mixing experiments, i.e. propan-2-ol and water, water and sodium chloride solution, both microchannels show mixing index for each Reynolds number is directly proportional to the mixing time. At low Reynolds number, higher molecular diffusion takes place while at low flow rate, the residence time of fluid is high. The mixing performance is relatively good at high Reynolds number of 40 and 50 due to the significant convection which is caused by the effect of stretching and thinning of liquid lamellae. For immiscible propan-2-ol and sodium chloride solution mixing, offset T-junction microchannel offers better mixing performance than T-junction microchannel at both low and high Reynolds number. The chaotic mixing happened at the intersection of the T-junction microchannel due to the direct interaction of two liquids entering the junction at high momentum. |
---|---|
ISSN: | 0954-4089 2041-3009 |
DOI: | 10.1177/09544089211015476 |