Antisymmetric Paramodular Forms of Weights 2 and 3
Abstract We define an algebraic set in $23$-dimensional projective space whose ${{\mathbb{Q}}}$-rational points correspond to meromorphic, antisymmetric, paramodular Borcherds products. We know two lines inside this algebraic set. Some rational points on these lines give holomorphic Borcherds produc...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2020-10, Vol.2020 (20), p.6926-6946 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
We define an algebraic set in $23$-dimensional projective space whose ${{\mathbb{Q}}}$-rational points correspond to meromorphic, antisymmetric, paramodular Borcherds products. We know two lines inside this algebraic set. Some rational points on these lines give holomorphic Borcherds products and thus construct examples of Siegel modular forms on degree 2 paramodular groups. Weight $3$ examples provide antisymmetric canonical differential forms on Siegel modular three-folds. Weight $2$ is the minimal weight and these examples, via the paramodular conjecture, give evidence for the modularity of some rank 1 abelian surfaces defined over $\mathbb{Q}$. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnz011 |