On the Lovász–Schrijver PSD-operator on graph classes defined by clique cutsets
This work is devoted to the study of the Lovász–Schrijver PSD-operator LS+ applied to the edge relaxation ESTAB(G) of the stable set polytope STAB(G) of a graph G. In order to characterize the graphs G for which STAB(G) is achieved in one iteration of the LS+-operator, called LS+-perfect graphs, an...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2022-02, Vol.308, p.209-219 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 219 |
---|---|
container_issue | |
container_start_page | 209 |
container_title | Discrete Applied Mathematics |
container_volume | 308 |
creator | Wagler, Annegret K. |
description | This work is devoted to the study of the Lovász–Schrijver PSD-operator LS+ applied to the edge relaxation ESTAB(G) of the stable set polytope STAB(G) of a graph G. In order to characterize the graphs G for which STAB(G) is achieved in one iteration of the LS+-operator, called LS+-perfect graphs, an according conjecture has been recently formulated (LS+-Perfect Graph Conjecture). Here we study two graph classes defined by clique cutsets (pseudothreshold graphs and graphs without certain Truemper configurations). We completely describe the facets of the stable set polytope for such graphs, which enables us to show that one class is a subclass of LS+-perfect graphs, and to verify the LS+-Perfect Graph Conjecture for the other class. |
doi_str_mv | 10.1016/j.dam.2019.07.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04404013v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X19303336</els_id><sourcerecordid>2627857798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-3e94deeeb3e806c7acfa283237deef6846e7abcb4768650b445d0076ac2bf2c03</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsP4C7gysWMN5lpMsVVqb9QUPwBdyGTuWMz1ElNpoW68h18Ap_FN_FJTKm4dHW5h-8c7j2EHDJIGTBx0qSVfkk5sGEKMgUmt0iPFZInQkq2TXqREQlnxdMu2QuhAQAWtx65u2lpN0U6ccuvz_D2_f5xb6beNkv09Pb-LHFz9LpznrqWPns9n1Iz0yFgoBXWtsWKlqso2dcFUrPoAnZhn-zUehbw4Hf2yePF-cP4KpncXF6PR5PEZINhl2Q4zCtELDMsQBipTa15kfFMRrUWRS5Q6tKUuRSFGECZ54MKQApteFlzA1mfHG9yp3qm5t6-aL9STlt1NZqotQZ5DjmwbMkie7Rh597FU0OnGrfwbTxPccFlMZByWESKbSjjXQge679YBmpds2pUrFmta1YgVaw5ek43HoyvLi16FYzF1mBlPZpOVc7-4_4Ba0GGUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627857798</pqid></control><display><type>article</type><title>On the Lovász–Schrijver PSD-operator on graph classes defined by clique cutsets</title><source>Elsevier ScienceDirect Journals</source><creator>Wagler, Annegret K.</creator><creatorcontrib>Wagler, Annegret K.</creatorcontrib><description>This work is devoted to the study of the Lovász–Schrijver PSD-operator LS+ applied to the edge relaxation ESTAB(G) of the stable set polytope STAB(G) of a graph G. In order to characterize the graphs G for which STAB(G) is achieved in one iteration of the LS+-operator, called LS+-perfect graphs, an according conjecture has been recently formulated (LS+-Perfect Graph Conjecture). Here we study two graph classes defined by clique cutsets (pseudothreshold graphs and graphs without certain Truemper configurations). We completely describe the facets of the stable set polytope for such graphs, which enables us to show that one class is a subclass of LS+-perfect graphs, and to verify the LS+-Perfect Graph Conjecture for the other class.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2019.07.017</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>[formula omitted]-perfect graphs ; Computer Science ; Discrete Mathematics ; Graph classes defined by clique cutsets ; Graphs ; Polytopes ; Stable set polytope</subject><ispartof>Discrete Applied Mathematics, 2022-02, Vol.308, p.209-219</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 15, 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-3e94deeeb3e806c7acfa283237deef6846e7abcb4768650b445d0076ac2bf2c03</citedby><cites>FETCH-LOGICAL-c359t-3e94deeeb3e806c7acfa283237deef6846e7abcb4768650b445d0076ac2bf2c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0166218X19303336$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04404013$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wagler, Annegret K.</creatorcontrib><title>On the Lovász–Schrijver PSD-operator on graph classes defined by clique cutsets</title><title>Discrete Applied Mathematics</title><description>This work is devoted to the study of the Lovász–Schrijver PSD-operator LS+ applied to the edge relaxation ESTAB(G) of the stable set polytope STAB(G) of a graph G. In order to characterize the graphs G for which STAB(G) is achieved in one iteration of the LS+-operator, called LS+-perfect graphs, an according conjecture has been recently formulated (LS+-Perfect Graph Conjecture). Here we study two graph classes defined by clique cutsets (pseudothreshold graphs and graphs without certain Truemper configurations). We completely describe the facets of the stable set polytope for such graphs, which enables us to show that one class is a subclass of LS+-perfect graphs, and to verify the LS+-Perfect Graph Conjecture for the other class.</description><subject>[formula omitted]-perfect graphs</subject><subject>Computer Science</subject><subject>Discrete Mathematics</subject><subject>Graph classes defined by clique cutsets</subject><subject>Graphs</subject><subject>Polytopes</subject><subject>Stable set polytope</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsP4C7gysWMN5lpMsVVqb9QUPwBdyGTuWMz1ElNpoW68h18Ap_FN_FJTKm4dHW5h-8c7j2EHDJIGTBx0qSVfkk5sGEKMgUmt0iPFZInQkq2TXqREQlnxdMu2QuhAQAWtx65u2lpN0U6ccuvz_D2_f5xb6beNkv09Pb-LHFz9LpznrqWPns9n1Iz0yFgoBXWtsWKlqso2dcFUrPoAnZhn-zUehbw4Hf2yePF-cP4KpncXF6PR5PEZINhl2Q4zCtELDMsQBipTa15kfFMRrUWRS5Q6tKUuRSFGECZ54MKQApteFlzA1mfHG9yp3qm5t6-aL9STlt1NZqotQZ5DjmwbMkie7Rh597FU0OnGrfwbTxPccFlMZByWESKbSjjXQge679YBmpds2pUrFmta1YgVaw5ek43HoyvLi16FYzF1mBlPZpOVc7-4_4Ba0GGUA</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Wagler, Annegret K.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20220215</creationdate><title>On the Lovász–Schrijver PSD-operator on graph classes defined by clique cutsets</title><author>Wagler, Annegret K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-3e94deeeb3e806c7acfa283237deef6846e7abcb4768650b445d0076ac2bf2c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>[formula omitted]-perfect graphs</topic><topic>Computer Science</topic><topic>Discrete Mathematics</topic><topic>Graph classes defined by clique cutsets</topic><topic>Graphs</topic><topic>Polytopes</topic><topic>Stable set polytope</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagler, Annegret K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wagler, Annegret K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Lovász–Schrijver PSD-operator on graph classes defined by clique cutsets</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2022-02-15</date><risdate>2022</risdate><volume>308</volume><spage>209</spage><epage>219</epage><pages>209-219</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>This work is devoted to the study of the Lovász–Schrijver PSD-operator LS+ applied to the edge relaxation ESTAB(G) of the stable set polytope STAB(G) of a graph G. In order to characterize the graphs G for which STAB(G) is achieved in one iteration of the LS+-operator, called LS+-perfect graphs, an according conjecture has been recently formulated (LS+-Perfect Graph Conjecture). Here we study two graph classes defined by clique cutsets (pseudothreshold graphs and graphs without certain Truemper configurations). We completely describe the facets of the stable set polytope for such graphs, which enables us to show that one class is a subclass of LS+-perfect graphs, and to verify the LS+-Perfect Graph Conjecture for the other class.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2019.07.017</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2022-02, Vol.308, p.209-219 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04404013v1 |
source | Elsevier ScienceDirect Journals |
subjects | [formula omitted]-perfect graphs Computer Science Discrete Mathematics Graph classes defined by clique cutsets Graphs Polytopes Stable set polytope |
title | On the Lovász–Schrijver PSD-operator on graph classes defined by clique cutsets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A31%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Lov%C3%A1sz%E2%80%93Schrijver%20PSD-operator%20on%20graph%20classes%20defined%20by%20clique%20cutsets&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Wagler,%20Annegret%20K.&rft.date=2022-02-15&rft.volume=308&rft.spage=209&rft.epage=219&rft.pages=209-219&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2019.07.017&rft_dat=%3Cproquest_hal_p%3E2627857798%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627857798&rft_id=info:pmid/&rft_els_id=S0166218X19303336&rfr_iscdi=true |