On the Lovász–Schrijver PSD-operator on graph classes defined by clique cutsets

This work is devoted to the study of the Lovász–Schrijver PSD-operator LS+ applied to the edge relaxation ESTAB(G) of the stable set polytope STAB(G) of a graph G. In order to characterize the graphs G for which STAB(G) is achieved in one iteration of the LS+-operator, called LS+-perfect graphs, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2022-02, Vol.308, p.209-219
1. Verfasser: Wagler, Annegret K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 219
container_issue
container_start_page 209
container_title Discrete Applied Mathematics
container_volume 308
creator Wagler, Annegret K.
description This work is devoted to the study of the Lovász–Schrijver PSD-operator LS+ applied to the edge relaxation ESTAB(G) of the stable set polytope STAB(G) of a graph G. In order to characterize the graphs G for which STAB(G) is achieved in one iteration of the LS+-operator, called LS+-perfect graphs, an according conjecture has been recently formulated (LS+-Perfect Graph Conjecture). Here we study two graph classes defined by clique cutsets (pseudothreshold graphs and graphs without certain Truemper configurations). We completely describe the facets of the stable set polytope for such graphs, which enables us to show that one class is a subclass of LS+-perfect graphs, and to verify the LS+-Perfect Graph Conjecture for the other class.
doi_str_mv 10.1016/j.dam.2019.07.017
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04404013v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X19303336</els_id><sourcerecordid>2627857798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-3e94deeeb3e806c7acfa283237deef6846e7abcb4768650b445d0076ac2bf2c03</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsP4C7gysWMN5lpMsVVqb9QUPwBdyGTuWMz1ElNpoW68h18Ap_FN_FJTKm4dHW5h-8c7j2EHDJIGTBx0qSVfkk5sGEKMgUmt0iPFZInQkq2TXqREQlnxdMu2QuhAQAWtx65u2lpN0U6ccuvz_D2_f5xb6beNkv09Pb-LHFz9LpznrqWPns9n1Iz0yFgoBXWtsWKlqso2dcFUrPoAnZhn-zUehbw4Hf2yePF-cP4KpncXF6PR5PEZINhl2Q4zCtELDMsQBipTa15kfFMRrUWRS5Q6tKUuRSFGECZ54MKQApteFlzA1mfHG9yp3qm5t6-aL9STlt1NZqotQZ5DjmwbMkie7Rh597FU0OnGrfwbTxPccFlMZByWESKbSjjXQge679YBmpds2pUrFmta1YgVaw5ek43HoyvLi16FYzF1mBlPZpOVc7-4_4Ba0GGUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627857798</pqid></control><display><type>article</type><title>On the Lovász–Schrijver PSD-operator on graph classes defined by clique cutsets</title><source>Elsevier ScienceDirect Journals</source><creator>Wagler, Annegret K.</creator><creatorcontrib>Wagler, Annegret K.</creatorcontrib><description>This work is devoted to the study of the Lovász–Schrijver PSD-operator LS+ applied to the edge relaxation ESTAB(G) of the stable set polytope STAB(G) of a graph G. In order to characterize the graphs G for which STAB(G) is achieved in one iteration of the LS+-operator, called LS+-perfect graphs, an according conjecture has been recently formulated (LS+-Perfect Graph Conjecture). Here we study two graph classes defined by clique cutsets (pseudothreshold graphs and graphs without certain Truemper configurations). We completely describe the facets of the stable set polytope for such graphs, which enables us to show that one class is a subclass of LS+-perfect graphs, and to verify the LS+-Perfect Graph Conjecture for the other class.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2019.07.017</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>[formula omitted]-perfect graphs ; Computer Science ; Discrete Mathematics ; Graph classes defined by clique cutsets ; Graphs ; Polytopes ; Stable set polytope</subject><ispartof>Discrete Applied Mathematics, 2022-02, Vol.308, p.209-219</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 15, 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-3e94deeeb3e806c7acfa283237deef6846e7abcb4768650b445d0076ac2bf2c03</citedby><cites>FETCH-LOGICAL-c359t-3e94deeeb3e806c7acfa283237deef6846e7abcb4768650b445d0076ac2bf2c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0166218X19303336$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04404013$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wagler, Annegret K.</creatorcontrib><title>On the Lovász–Schrijver PSD-operator on graph classes defined by clique cutsets</title><title>Discrete Applied Mathematics</title><description>This work is devoted to the study of the Lovász–Schrijver PSD-operator LS+ applied to the edge relaxation ESTAB(G) of the stable set polytope STAB(G) of a graph G. In order to characterize the graphs G for which STAB(G) is achieved in one iteration of the LS+-operator, called LS+-perfect graphs, an according conjecture has been recently formulated (LS+-Perfect Graph Conjecture). Here we study two graph classes defined by clique cutsets (pseudothreshold graphs and graphs without certain Truemper configurations). We completely describe the facets of the stable set polytope for such graphs, which enables us to show that one class is a subclass of LS+-perfect graphs, and to verify the LS+-Perfect Graph Conjecture for the other class.</description><subject>[formula omitted]-perfect graphs</subject><subject>Computer Science</subject><subject>Discrete Mathematics</subject><subject>Graph classes defined by clique cutsets</subject><subject>Graphs</subject><subject>Polytopes</subject><subject>Stable set polytope</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsP4C7gysWMN5lpMsVVqb9QUPwBdyGTuWMz1ElNpoW68h18Ap_FN_FJTKm4dHW5h-8c7j2EHDJIGTBx0qSVfkk5sGEKMgUmt0iPFZInQkq2TXqREQlnxdMu2QuhAQAWtx65u2lpN0U6ccuvz_D2_f5xb6beNkv09Pb-LHFz9LpznrqWPns9n1Iz0yFgoBXWtsWKlqso2dcFUrPoAnZhn-zUehbw4Hf2yePF-cP4KpncXF6PR5PEZINhl2Q4zCtELDMsQBipTa15kfFMRrUWRS5Q6tKUuRSFGECZ54MKQApteFlzA1mfHG9yp3qm5t6-aL9STlt1NZqotQZ5DjmwbMkie7Rh597FU0OnGrfwbTxPccFlMZByWESKbSjjXQge679YBmpds2pUrFmta1YgVaw5ek43HoyvLi16FYzF1mBlPZpOVc7-4_4Ba0GGUA</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Wagler, Annegret K.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20220215</creationdate><title>On the Lovász–Schrijver PSD-operator on graph classes defined by clique cutsets</title><author>Wagler, Annegret K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-3e94deeeb3e806c7acfa283237deef6846e7abcb4768650b445d0076ac2bf2c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>[formula omitted]-perfect graphs</topic><topic>Computer Science</topic><topic>Discrete Mathematics</topic><topic>Graph classes defined by clique cutsets</topic><topic>Graphs</topic><topic>Polytopes</topic><topic>Stable set polytope</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagler, Annegret K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wagler, Annegret K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Lovász–Schrijver PSD-operator on graph classes defined by clique cutsets</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2022-02-15</date><risdate>2022</risdate><volume>308</volume><spage>209</spage><epage>219</epage><pages>209-219</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>This work is devoted to the study of the Lovász–Schrijver PSD-operator LS+ applied to the edge relaxation ESTAB(G) of the stable set polytope STAB(G) of a graph G. In order to characterize the graphs G for which STAB(G) is achieved in one iteration of the LS+-operator, called LS+-perfect graphs, an according conjecture has been recently formulated (LS+-Perfect Graph Conjecture). Here we study two graph classes defined by clique cutsets (pseudothreshold graphs and graphs without certain Truemper configurations). We completely describe the facets of the stable set polytope for such graphs, which enables us to show that one class is a subclass of LS+-perfect graphs, and to verify the LS+-Perfect Graph Conjecture for the other class.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2019.07.017</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2022-02, Vol.308, p.209-219
issn 0166-218X
1872-6771
language eng
recordid cdi_hal_primary_oai_HAL_hal_04404013v1
source Elsevier ScienceDirect Journals
subjects [formula omitted]-perfect graphs
Computer Science
Discrete Mathematics
Graph classes defined by clique cutsets
Graphs
Polytopes
Stable set polytope
title On the Lovász–Schrijver PSD-operator on graph classes defined by clique cutsets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A31%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Lov%C3%A1sz%E2%80%93Schrijver%20PSD-operator%20on%20graph%20classes%20defined%20by%20clique%20cutsets&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Wagler,%20Annegret%20K.&rft.date=2022-02-15&rft.volume=308&rft.spage=209&rft.epage=219&rft.pages=209-219&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2019.07.017&rft_dat=%3Cproquest_hal_p%3E2627857798%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627857798&rft_id=info:pmid/&rft_els_id=S0166218X19303336&rfr_iscdi=true