On the Lovász–Schrijver PSD-operator on graph classes defined by clique cutsets

This work is devoted to the study of the Lovász–Schrijver PSD-operator LS+ applied to the edge relaxation ESTAB(G) of the stable set polytope STAB(G) of a graph G. In order to characterize the graphs G for which STAB(G) is achieved in one iteration of the LS+-operator, called LS+-perfect graphs, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2022-02, Vol.308, p.209-219
1. Verfasser: Wagler, Annegret K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work is devoted to the study of the Lovász–Schrijver PSD-operator LS+ applied to the edge relaxation ESTAB(G) of the stable set polytope STAB(G) of a graph G. In order to characterize the graphs G for which STAB(G) is achieved in one iteration of the LS+-operator, called LS+-perfect graphs, an according conjecture has been recently formulated (LS+-Perfect Graph Conjecture). Here we study two graph classes defined by clique cutsets (pseudothreshold graphs and graphs without certain Truemper configurations). We completely describe the facets of the stable set polytope for such graphs, which enables us to show that one class is a subclass of LS+-perfect graphs, and to verify the LS+-Perfect Graph Conjecture for the other class.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2019.07.017