Sky-signatures: detecting and characterizing recurrent behavior in sequential data

This paper proposes the sky-signature model, an extension of the signature model Gautrais et al. (in: Proceedings of the Pacific-Asia conference on knowledge discovery and data mining (PAKDD), Springer, 2017b) to multi-objective optimization. The signature approach considers a sequence of itemsets,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Data mining and knowledge discovery 2024-03, Vol.38 (2), p.372-419
Hauptverfasser: Gautrais, Clément, Cellier, Peggy, Guyet, Thomas, Quiniou, René, Termier, Alexandre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes the sky-signature model, an extension of the signature model Gautrais et al. (in: Proceedings of the Pacific-Asia conference on knowledge discovery and data mining (PAKDD), Springer, 2017b) to multi-objective optimization. The signature approach considers a sequence of itemsets, and given a number k it returns a segmentation of the sequence in k segments such that the number of items occuring in all segments is maximized. The limitation of this approach is that it requires to manually set k , and thus fixes the temporal granularity at which the data is analyzed. The sky-signature model proposed in this paper removes this requirement, and allows to examine the results at multiple levels of granularity, while keeping a compact output. This paper also proposes efficient algorithms to mine sky-signatures, as well as an experimental validation both real data both from the retail domain and from natural language processing (political speeches).
ISSN:1384-5810
1573-756X
DOI:10.1007/s10618-023-00949-1