Moment Infinitely Divisible Weighted Shifts

We say that a weighted shift W α with (positive) weight sequence α : α 0 , α 1 , … is moment infinitely divisible (MID) if, for every t > 0 , the shift with weight sequence α t : α 0 t , α 1 t , … is subnormal. Assume that W α is a contraction, i.e., 0 < α i ≤ 1 for all i ≥ 0 . We show that su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex analysis and operator theory 2019-02, Vol.13 (1), p.241-255
Hauptverfasser: Benhida, Chafiq, Curto, Raúl E., Exner, George R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We say that a weighted shift W α with (positive) weight sequence α : α 0 , α 1 , … is moment infinitely divisible (MID) if, for every t > 0 , the shift with weight sequence α t : α 0 t , α 1 t , … is subnormal. Assume that W α is a contraction, i.e., 0 < α i ≤ 1 for all i ≥ 0 . We show that such a shift W α is MID if and only if the sequence α is log completely alternating. This enables the recapture or improvement of some previous results proved rather differently. We derive in particular new conditions sufficient for subnormality of a weighted shift, and each example contains implicitly an example or family of infinitely divisible Hankel matrices, many of which appear to be new.
ISSN:1661-8254
1661-8262
DOI:10.1007/s11785-018-0771-z