Moment Infinitely Divisible Weighted Shifts
We say that a weighted shift W α with (positive) weight sequence α : α 0 , α 1 , … is moment infinitely divisible (MID) if, for every t > 0 , the shift with weight sequence α t : α 0 t , α 1 t , … is subnormal. Assume that W α is a contraction, i.e., 0 < α i ≤ 1 for all i ≥ 0 . We show that su...
Gespeichert in:
Veröffentlicht in: | Complex analysis and operator theory 2019-02, Vol.13 (1), p.241-255 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We say that a weighted shift
W
α
with (positive) weight sequence
α
:
α
0
,
α
1
,
…
is
moment infinitely divisible
(MID) if, for every
t
>
0
, the shift with weight sequence
α
t
:
α
0
t
,
α
1
t
,
…
is subnormal. Assume that
W
α
is a contraction, i.e.,
0
<
α
i
≤
1
for all
i
≥
0
. We show that such a shift
W
α
is MID if and only if the sequence
α
is log completely alternating. This enables the recapture or improvement of some previous results proved rather differently. We derive in particular new conditions sufficient for subnormality of a weighted shift, and each example contains implicitly an example or family of infinitely divisible Hankel matrices, many of which appear to be new. |
---|---|
ISSN: | 1661-8254 1661-8262 |
DOI: | 10.1007/s11785-018-0771-z |