IRREDUCIBILITY AND GEOMETRIC ERGODICITY OF HAMILTONIAN MONTE CARLO

Hamiltonian Monte Carlo (HMC) is currently one of the most popular Markov Chain Monte Carlo algorithms to sample smooth distributions over continuous state space. This paper discusses the irreducibility and geometric ergodicity of the HMC algorithm. We consider cases where the number of steps of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2020-12, Vol.48 (6), p.3545-3564
Hauptverfasser: Durmus, Alain, Moulines, Eric, Saksman, Eero
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hamiltonian Monte Carlo (HMC) is currently one of the most popular Markov Chain Monte Carlo algorithms to sample smooth distributions over continuous state space. This paper discusses the irreducibility and geometric ergodicity of the HMC algorithm. We consider cases where the number of steps of the Störmer–Verlet integrator is either fixed or random. Under mild conditions on the potential U associated with target distribution π, we first show that the Markov kernel associated to the HMC algorithm is irreducible and positive recurrent. Under more stringent conditions, we then establish that the Markov kernel is Harris recurrent. We provide verifiable conditions on U under which the HMC sampler is geometrically ergodic. Finally, we illustrate our results on several examples.
ISSN:0090-5364
2168-8966
DOI:10.1214/19-AOS1941