Inverse source problem with a posteriori boundary measurement for fractional diffusion equations
In this article, we study inverse source problems for time‐fractional diffusion equations from a posteriori boundary measurement. Using the memory effect of these class of equations, we solve these inverse problems for several class of space‐ or time‐dependent source terms. We prove also the unique...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2023-09, Vol.46 (14), p.15868-15882 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we study inverse source problems for time‐fractional diffusion equations from a posteriori boundary measurement. Using the memory effect of these class of equations, we solve these inverse problems for several class of space‐ or time‐dependent source terms. We prove also the unique determination of a general class of space–time‐dependent separated variables source terms from such measurement. Our approach is based on the study of singularities of the Laplace transform in time of boundary traces of solutions of time‐fractional diffusion equations. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.9432 |