Lefschetz section theorems for tropical hypersurfaces
We establish variants of the Lefschetz section theorem for the integral tropical homology groups of tropical hypersurfaces of tropical toric varieties. It follows from these theorems that the integral tropical homology groups of non-singular tropical hypersurfaces which are compact or contained in R...
Gespeichert in:
Veröffentlicht in: | Annales Henri Lebesgue 2021-09, Vol.4, p.1347-1387 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish variants of the Lefschetz section theorem for the integral tropical homology groups of tropical hypersurfaces of tropical toric varieties. It follows from these theorems that the integral tropical homology groups of non-singular tropical hypersurfaces which are compact or contained in Rn are torsion free. We prove a relationship between the coefficients of the χy genera of complex hypersurfaces in toric varieties and Euler characteristics of the integral tropical cellular chain complexes of their tropical counterparts. It follows that the integral tropical homology groups give the Hodge numbers of compact non-singular hypersurfaces of complex toric varieties. Finally for tropical hypersurfaces in certain affine toric varieties, we relate the ranks of their tropical homology groups to the Hodge–Deligne numbers of their complex counterparts. |
---|---|
ISSN: | 2644-9463 2644-9463 |
DOI: | 10.5802/ahl.104 |