Assessing Pt and Ni dissolution mechanism and kinetics of shape-controlled oxygen reduction nanocatalysts

•Pt and Ni dissolution mechanisms are morphology-independent.•Pt and Ni dissolution rates are morphology-dependent.•Increased Pt and Ni dissolution rate above 1 V versus RHE.•In situ ICP-MS evidence of Pt-skeleton nanostructure formation.•Long AST needed for steady state dissolution and catalyst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2024-02, Vol.477, p.143760, Article 143760
Hauptverfasser: Roiron, Camille, Martin, Vincent, Kumar, Kavita, Dubau, Laetitia, Maillard, Frédéric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 143760
container_title Electrochimica acta
container_volume 477
creator Roiron, Camille
Martin, Vincent
Kumar, Kavita
Dubau, Laetitia
Maillard, Frédéric
description •Pt and Ni dissolution mechanisms are morphology-independent.•Pt and Ni dissolution rates are morphology-dependent.•Increased Pt and Ni dissolution rate above 1 V versus RHE.•In situ ICP-MS evidence of Pt-skeleton nanostructure formation.•Long AST needed for steady state dissolution and catalyst's lifetime prediction. An electrochemical flow cell combined with inductively coupled plasma mass spectrometry (FC-ICP-MS) is a powerful tool to understand the mechanisms of metal dissolution and to develop mitigation strategies. Herein, we quantified in situ the amount of Pt and Ni atoms dissolved from PtNi/C nanocatalysts employed to electrocatalyze the oxygen reduction reaction (ORR) in proton-exchange membrane fuel cell cathode. The nanocatalysts feature similar crystallite size and Pt:Ni atomic ratio but different morphologies (spheres, octahedra, sponges). The FC-ICP-MS results reveal that the nanocatalyst morphology affects the dissolution rate of Pt and Ni but not the dissolution mechanism. They also provide analytical evidence that dissolution of Pt atoms is consistently accompanied by the dissolution of Ni atoms exceeding the stoichiometric composition. Furthermore, we demonstrate that ex situ acid leaching mitigates, but does not entirely prevent, the electrochemical dissolution of Ni atoms. Stabilized Pt and Ni dissolution rates were achieved after a one hour long accelerated stress test (AST). We provide evidence that the Pt dissolution rate remains constant before and after the AST. In contrast, the dissolution rate of Ni decreases by a factor of 10 following the AST. Among various nanoparticle shapes, spherical PtNi/C nanoparticles offer the best solution regarding the Pt and Ni retention compared to other nanoparticle shapes. [Display omitted]
doi_str_mv 10.1016/j.electacta.2024.143760
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04392526v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468624000045</els_id><sourcerecordid>oai_HAL_hal_04392526v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-9a265997b4989c7942b178d42877e85533f1148faffbbfede46b543f84dd33923</originalsourceid><addsrcrecordid>eNqFkMFqGzEQhkVJoU7aZ6iuOawjrbQr6WhCWwdMk0N7FlppZMtZS2Znbeq3z9oOuRYGBma-b2B-Qr5zNueMtw_bOfTgRzfVvGa1nHMpVMs-kRnXSlRCN-aGzBjjopKtbr-QW8QtY0y1is1IWiACYspr-jJSlwP9nWhIiKU_jKlkugO_cTnh7rJ8TRnG5JGWSHHj9lD5kseh9D0EWv6d1pDpAOHgL252uXg3uv6EI34ln6PrEb699zvy9-ePP4_LavX86-lxsaq8MHqsjKvbxhjVSaONV0bWHVc6yForBbpphIicSx1djF0XIYBsu0aKqGUIQpha3JH7692N6-1-SDs3nGxxyS4XK3ueMTlhTd0e-cSqK-uHgjhA_BA4s-d07dZ-pGvP6dprupO5uJowvXJMMFj0CbKHkIaJt6Gk_954A3GPiLI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Assessing Pt and Ni dissolution mechanism and kinetics of shape-controlled oxygen reduction nanocatalysts</title><source>Elsevier ScienceDirect Journals</source><creator>Roiron, Camille ; Martin, Vincent ; Kumar, Kavita ; Dubau, Laetitia ; Maillard, Frédéric</creator><creatorcontrib>Roiron, Camille ; Martin, Vincent ; Kumar, Kavita ; Dubau, Laetitia ; Maillard, Frédéric</creatorcontrib><description>•Pt and Ni dissolution mechanisms are morphology-independent.•Pt and Ni dissolution rates are morphology-dependent.•Increased Pt and Ni dissolution rate above 1 V versus RHE.•In situ ICP-MS evidence of Pt-skeleton nanostructure formation.•Long AST needed for steady state dissolution and catalyst's lifetime prediction. An electrochemical flow cell combined with inductively coupled plasma mass spectrometry (FC-ICP-MS) is a powerful tool to understand the mechanisms of metal dissolution and to develop mitigation strategies. Herein, we quantified in situ the amount of Pt and Ni atoms dissolved from PtNi/C nanocatalysts employed to electrocatalyze the oxygen reduction reaction (ORR) in proton-exchange membrane fuel cell cathode. The nanocatalysts feature similar crystallite size and Pt:Ni atomic ratio but different morphologies (spheres, octahedra, sponges). The FC-ICP-MS results reveal that the nanocatalyst morphology affects the dissolution rate of Pt and Ni but not the dissolution mechanism. They also provide analytical evidence that dissolution of Pt atoms is consistently accompanied by the dissolution of Ni atoms exceeding the stoichiometric composition. Furthermore, we demonstrate that ex situ acid leaching mitigates, but does not entirely prevent, the electrochemical dissolution of Ni atoms. Stabilized Pt and Ni dissolution rates were achieved after a one hour long accelerated stress test (AST). We provide evidence that the Pt dissolution rate remains constant before and after the AST. In contrast, the dissolution rate of Ni decreases by a factor of 10 following the AST. Among various nanoparticle shapes, spherical PtNi/C nanoparticles offer the best solution regarding the Pt and Ni retention compared to other nanoparticle shapes. [Display omitted]</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2024.143760</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Catalysis ; Chemical Sciences ; Degradation mechanisms ; Durability ; Electrochemical flow cell combined with inductively coupled plasma mass spectrometry ; Material chemistry ; Oxygen reduction reaction ; Shape-controlled PtNi nanocatalysts</subject><ispartof>Electrochimica acta, 2024-02, Vol.477, p.143760, Article 143760</ispartof><rights>2024 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-9a265997b4989c7942b178d42877e85533f1148faffbbfede46b543f84dd33923</citedby><cites>FETCH-LOGICAL-c398t-9a265997b4989c7942b178d42877e85533f1148faffbbfede46b543f84dd33923</cites><orcidid>0000-0003-3844-1082 ; 0000-0002-6470-8900 ; 0000-0001-9520-1435</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2024.143760$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04392526$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Roiron, Camille</creatorcontrib><creatorcontrib>Martin, Vincent</creatorcontrib><creatorcontrib>Kumar, Kavita</creatorcontrib><creatorcontrib>Dubau, Laetitia</creatorcontrib><creatorcontrib>Maillard, Frédéric</creatorcontrib><title>Assessing Pt and Ni dissolution mechanism and kinetics of shape-controlled oxygen reduction nanocatalysts</title><title>Electrochimica acta</title><description>•Pt and Ni dissolution mechanisms are morphology-independent.•Pt and Ni dissolution rates are morphology-dependent.•Increased Pt and Ni dissolution rate above 1 V versus RHE.•In situ ICP-MS evidence of Pt-skeleton nanostructure formation.•Long AST needed for steady state dissolution and catalyst's lifetime prediction. An electrochemical flow cell combined with inductively coupled plasma mass spectrometry (FC-ICP-MS) is a powerful tool to understand the mechanisms of metal dissolution and to develop mitigation strategies. Herein, we quantified in situ the amount of Pt and Ni atoms dissolved from PtNi/C nanocatalysts employed to electrocatalyze the oxygen reduction reaction (ORR) in proton-exchange membrane fuel cell cathode. The nanocatalysts feature similar crystallite size and Pt:Ni atomic ratio but different morphologies (spheres, octahedra, sponges). The FC-ICP-MS results reveal that the nanocatalyst morphology affects the dissolution rate of Pt and Ni but not the dissolution mechanism. They also provide analytical evidence that dissolution of Pt atoms is consistently accompanied by the dissolution of Ni atoms exceeding the stoichiometric composition. Furthermore, we demonstrate that ex situ acid leaching mitigates, but does not entirely prevent, the electrochemical dissolution of Ni atoms. Stabilized Pt and Ni dissolution rates were achieved after a one hour long accelerated stress test (AST). We provide evidence that the Pt dissolution rate remains constant before and after the AST. In contrast, the dissolution rate of Ni decreases by a factor of 10 following the AST. Among various nanoparticle shapes, spherical PtNi/C nanoparticles offer the best solution regarding the Pt and Ni retention compared to other nanoparticle shapes. [Display omitted]</description><subject>Catalysis</subject><subject>Chemical Sciences</subject><subject>Degradation mechanisms</subject><subject>Durability</subject><subject>Electrochemical flow cell combined with inductively coupled plasma mass spectrometry</subject><subject>Material chemistry</subject><subject>Oxygen reduction reaction</subject><subject>Shape-controlled PtNi nanocatalysts</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMFqGzEQhkVJoU7aZ6iuOawjrbQr6WhCWwdMk0N7FlppZMtZS2Znbeq3z9oOuRYGBma-b2B-Qr5zNueMtw_bOfTgRzfVvGa1nHMpVMs-kRnXSlRCN-aGzBjjopKtbr-QW8QtY0y1is1IWiACYspr-jJSlwP9nWhIiKU_jKlkugO_cTnh7rJ8TRnG5JGWSHHj9lD5kseh9D0EWv6d1pDpAOHgL252uXg3uv6EI34ln6PrEb699zvy9-ePP4_LavX86-lxsaq8MHqsjKvbxhjVSaONV0bWHVc6yForBbpphIicSx1djF0XIYBsu0aKqGUIQpha3JH7692N6-1-SDs3nGxxyS4XK3ueMTlhTd0e-cSqK-uHgjhA_BA4s-d07dZ-pGvP6dprupO5uJowvXJMMFj0CbKHkIaJt6Gk_954A3GPiLI</recordid><startdate>20240210</startdate><enddate>20240210</enddate><creator>Roiron, Camille</creator><creator>Martin, Vincent</creator><creator>Kumar, Kavita</creator><creator>Dubau, Laetitia</creator><creator>Maillard, Frédéric</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3844-1082</orcidid><orcidid>https://orcid.org/0000-0002-6470-8900</orcidid><orcidid>https://orcid.org/0000-0001-9520-1435</orcidid></search><sort><creationdate>20240210</creationdate><title>Assessing Pt and Ni dissolution mechanism and kinetics of shape-controlled oxygen reduction nanocatalysts</title><author>Roiron, Camille ; Martin, Vincent ; Kumar, Kavita ; Dubau, Laetitia ; Maillard, Frédéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-9a265997b4989c7942b178d42877e85533f1148faffbbfede46b543f84dd33923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Catalysis</topic><topic>Chemical Sciences</topic><topic>Degradation mechanisms</topic><topic>Durability</topic><topic>Electrochemical flow cell combined with inductively coupled plasma mass spectrometry</topic><topic>Material chemistry</topic><topic>Oxygen reduction reaction</topic><topic>Shape-controlled PtNi nanocatalysts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roiron, Camille</creatorcontrib><creatorcontrib>Martin, Vincent</creatorcontrib><creatorcontrib>Kumar, Kavita</creatorcontrib><creatorcontrib>Dubau, Laetitia</creatorcontrib><creatorcontrib>Maillard, Frédéric</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roiron, Camille</au><au>Martin, Vincent</au><au>Kumar, Kavita</au><au>Dubau, Laetitia</au><au>Maillard, Frédéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing Pt and Ni dissolution mechanism and kinetics of shape-controlled oxygen reduction nanocatalysts</atitle><jtitle>Electrochimica acta</jtitle><date>2024-02-10</date><risdate>2024</risdate><volume>477</volume><spage>143760</spage><pages>143760-</pages><artnum>143760</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>•Pt and Ni dissolution mechanisms are morphology-independent.•Pt and Ni dissolution rates are morphology-dependent.•Increased Pt and Ni dissolution rate above 1 V versus RHE.•In situ ICP-MS evidence of Pt-skeleton nanostructure formation.•Long AST needed for steady state dissolution and catalyst's lifetime prediction. An electrochemical flow cell combined with inductively coupled plasma mass spectrometry (FC-ICP-MS) is a powerful tool to understand the mechanisms of metal dissolution and to develop mitigation strategies. Herein, we quantified in situ the amount of Pt and Ni atoms dissolved from PtNi/C nanocatalysts employed to electrocatalyze the oxygen reduction reaction (ORR) in proton-exchange membrane fuel cell cathode. The nanocatalysts feature similar crystallite size and Pt:Ni atomic ratio but different morphologies (spheres, octahedra, sponges). The FC-ICP-MS results reveal that the nanocatalyst morphology affects the dissolution rate of Pt and Ni but not the dissolution mechanism. They also provide analytical evidence that dissolution of Pt atoms is consistently accompanied by the dissolution of Ni atoms exceeding the stoichiometric composition. Furthermore, we demonstrate that ex situ acid leaching mitigates, but does not entirely prevent, the electrochemical dissolution of Ni atoms. Stabilized Pt and Ni dissolution rates were achieved after a one hour long accelerated stress test (AST). We provide evidence that the Pt dissolution rate remains constant before and after the AST. In contrast, the dissolution rate of Ni decreases by a factor of 10 following the AST. Among various nanoparticle shapes, spherical PtNi/C nanoparticles offer the best solution regarding the Pt and Ni retention compared to other nanoparticle shapes. [Display omitted]</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2024.143760</doi><orcidid>https://orcid.org/0000-0003-3844-1082</orcidid><orcidid>https://orcid.org/0000-0002-6470-8900</orcidid><orcidid>https://orcid.org/0000-0001-9520-1435</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2024-02, Vol.477, p.143760, Article 143760
issn 0013-4686
1873-3859
language eng
recordid cdi_hal_primary_oai_HAL_hal_04392526v1
source Elsevier ScienceDirect Journals
subjects Catalysis
Chemical Sciences
Degradation mechanisms
Durability
Electrochemical flow cell combined with inductively coupled plasma mass spectrometry
Material chemistry
Oxygen reduction reaction
Shape-controlled PtNi nanocatalysts
title Assessing Pt and Ni dissolution mechanism and kinetics of shape-controlled oxygen reduction nanocatalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A44%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20Pt%20and%20Ni%20dissolution%20mechanism%20and%20kinetics%20of%20shape-controlled%20oxygen%20reduction%20nanocatalysts&rft.jtitle=Electrochimica%20acta&rft.au=Roiron,%20Camille&rft.date=2024-02-10&rft.volume=477&rft.spage=143760&rft.pages=143760-&rft.artnum=143760&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2024.143760&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04392526v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0013468624000045&rfr_iscdi=true