Assessing Pt and Ni dissolution mechanism and kinetics of shape-controlled oxygen reduction nanocatalysts

•Pt and Ni dissolution mechanisms are morphology-independent.•Pt and Ni dissolution rates are morphology-dependent.•Increased Pt and Ni dissolution rate above 1 V versus RHE.•In situ ICP-MS evidence of Pt-skeleton nanostructure formation.•Long AST needed for steady state dissolution and catalyst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2024-02, Vol.477, p.143760, Article 143760
Hauptverfasser: Roiron, Camille, Martin, Vincent, Kumar, Kavita, Dubau, Laetitia, Maillard, Frédéric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Pt and Ni dissolution mechanisms are morphology-independent.•Pt and Ni dissolution rates are morphology-dependent.•Increased Pt and Ni dissolution rate above 1 V versus RHE.•In situ ICP-MS evidence of Pt-skeleton nanostructure formation.•Long AST needed for steady state dissolution and catalyst's lifetime prediction. An electrochemical flow cell combined with inductively coupled plasma mass spectrometry (FC-ICP-MS) is a powerful tool to understand the mechanisms of metal dissolution and to develop mitigation strategies. Herein, we quantified in situ the amount of Pt and Ni atoms dissolved from PtNi/C nanocatalysts employed to electrocatalyze the oxygen reduction reaction (ORR) in proton-exchange membrane fuel cell cathode. The nanocatalysts feature similar crystallite size and Pt:Ni atomic ratio but different morphologies (spheres, octahedra, sponges). The FC-ICP-MS results reveal that the nanocatalyst morphology affects the dissolution rate of Pt and Ni but not the dissolution mechanism. They also provide analytical evidence that dissolution of Pt atoms is consistently accompanied by the dissolution of Ni atoms exceeding the stoichiometric composition. Furthermore, we demonstrate that ex situ acid leaching mitigates, but does not entirely prevent, the electrochemical dissolution of Ni atoms. Stabilized Pt and Ni dissolution rates were achieved after a one hour long accelerated stress test (AST). We provide evidence that the Pt dissolution rate remains constant before and after the AST. In contrast, the dissolution rate of Ni decreases by a factor of 10 following the AST. Among various nanoparticle shapes, spherical PtNi/C nanoparticles offer the best solution regarding the Pt and Ni retention compared to other nanoparticle shapes. [Display omitted]
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2024.143760