Distortion in groups of affine interval exchange transformations
In this paper, we study distortion in the group $\mathcal A$ of affine interval exchange transformations (AIET). We prove that any distorted element $f$ of $\mathcal A$ has an iterate $f^k$ that is conjugate by an element of $\mathcal A$ to a product of infinite order restricted rotations, with pair...
Gespeichert in:
Veröffentlicht in: | Groups, geometry and dynamics geometry and dynamics, 2019-01, Vol.13 (3), p.795-819 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study distortion in the group $\mathcal A$ of affine interval exchange transformations (AIET). We prove that any distorted element $f$ of $\mathcal A$ has an iterate $f^k$ that is conjugate by an element of $\mathcal A$ to a product of infinite order restricted rotations, with pairwise disjoint supports. As consequences, we prove that no Baumslag–Solitar group, BS$(m,n)$ with $\vert m \vert \neq \vert n \vert $, acts faithfully by elements of $\mathcal A$; every finitely generated nilpotent group of $\mathcal A$ is virtually abelian and there is no distortion element in $\mathcal A_{\mathbb Q}$, the subgroup of $\mathcal A$ consisting of rational AIETs. |
---|---|
ISSN: | 1661-7207 1661-7215 |
DOI: | 10.4171/GGD/505 |