A comparison of hydrophilic interaction liquid chromatography and capillary electrophoresis for the metabolomics analysis of human serum

•A comparison of HILIC-MS and CE-MS for metabolomics in blood serum is performed.•Five different terms (specific to metabolomics) are selected for comparison.•Concise outlook on the current promises and pitfalls of both techniques is discussed.•MS-DIAL is used for the first time to effectively align...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Chromatography A 2023-09, Vol.1706, p.464239, Article 464239
Hauptverfasser: Narduzzi, Luca, del Mar Delgado-Povedano, María, Lara, Francisco J., Bizec, Bruno Le, García-Campaña, Ana María, Dervilly, Gaud, Hernández-Mesa, Maykel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•A comparison of HILIC-MS and CE-MS for metabolomics in blood serum is performed.•Five different terms (specific to metabolomics) are selected for comparison.•Concise outlook on the current promises and pitfalls of both techniques is discussed.•MS-DIAL is used for the first time to effectively align CE-MS peaks across samples. Cationic, anionic, zwitterionic and, partially polar metabolites are very important constituents of blood serum. Several of these metabolites underpin the core metabolism of cells (e.g., Krebs cycle, urea cycle, proteins synthesis, etc.), while others might be considered ancillary but still important to grasp the status of any organism through blood serum analysis. Due to its wide chemical diversity, modern metabolomics analysis of serum is still struggling to provide a complete and comprehensive picture of the polar metabolome, due to the limitations of each specific analytical method. In this study, two metabolomics-based analytical methods using the most successful techniques for polar compounds separation in human serum samples, namely hydrophilic interaction liquid chromatography (HILIC) and capillary electrophoresis (CE), are evaluated, both coupled to a high-resolution time-of-flight mass spectrometer via electrospray ionization (ESI-Q-TOF-MS). The performance of the two methods have been compared using five terms of comparison, three of which are specific to metabolomics, such as 1) compounds’ detectability 2) Pezzatti score (Pezzatti et al. 2018), 3) intra-day precision (repeatability), 4) ease of automatic analysis of the data (through a common deconvolution alignment and extrapolation software, MS-DIAL, and 5) time & cost analysis. From this study, HILIC-MS proved to be a better tool for polar metabolome analysis, while CE-MS helped identify some interesting variables that gave it interest in completing metabolome coverage in metabolomics studies. Finally, in this framework, MS-DIAL demonstrates for the first time its ability to process CE data for metabolomics, although it is not designed for it.
ISSN:0021-9673
1873-3778
DOI:10.1016/j.chroma.2023.464239